
198

Scalable and Serializable Networked Multi-actor
Programming

BO SANG, Purdue University and Ant Group, USA

PATRICK EUGSTER, USI Lugano, Switzerland, Purdue University, USA, and TU Darmstadt, Germany

GUSTAVO PETRI, ARM Research Cambridge, United Kingdom

SRIVATSAN RAVI, University of Southern California, USA

PIERRE-LOUIS ROMAN, USI Lugano, Switzerland

A major challenge in writing applications that execute across hosts, such as distributed online services, is

to reconcile (a) parallelism (i.e., allowing components to execute independently on disjoint tasks), and (b)

cooperation (i.e., allowing components to work together on common tasks). A good compromise between the

two is vital to scalability, a core concern in distributed networked applications.

The actor model of computation is a widely promoted programming model for distributed applications, as

actors can execute in individual threads (parallelism) across different hosts and interact via asynchronous

message passing (collaboration). However, this makes it hard for programmers to reason about combinations

of messages as opposed to individual messages, which is essential in many scenarios.

This paper presents a pragmatic variant of the actor model in which messages can be grouped into units

that are executed in a serializable manner, whilst still retaining a high degree of parallelism. In short, our

model is based on an orchestration of actors along a directed acyclic graph that supports efficient decentralized

synchronization among actors based on their actual interaction. We present the implementation of this model,

based on a dynamic DAG-inducing referencing discipline, in the actor-based programming language AEON.

We argue serializability and the absence of deadlocks in our model, and demonstrate its scalability and usability

through extensive evaluation and case studies of wide-ranging applications.

CCS Concepts: · Computing methodologies→ Distributed programming languages.

Additional Key Words and Phrases: actor, distribution, scalability, serializability

ACM Reference Format:

Bo Sang, Patrick Eugster, Gustavo Petri, Srivatsan Ravi, and Pierre-Louis Roman. 2020. Scalable and Serializable

Networked Multi-actor Programming. Proc. ACM Program. Lang. 4, OOPSLA, Article 198 (November 2020),

30 pages. https://doi.org/10.1145/3428266

1 INTRODUCTION

Distributed programs are the backbone of most highly demanding online services, including for
instance critical business transaction systems and multiplayer games with an ever growing user
base. These distributed programs are typically running in the cloud and are split into different
components that can process certain (parts of) requests from different clients independently, yet
have to collaborate Ð often over the network Ð with other components to process others. For

Authors’ addresses: Bo Sang, Purdue University and Ant Group, USA, bsang@purdue.edu; Patrick Eugster, USI Lugano,

Switzerland , Purdue University, USA , TU Darmstadt, Germany, eugstp@usi.ch; Gustavo Petri, ARM Research Cambridge,

United Kingdom, gustavo.petri@arm.com; Srivatsan Ravi, University of Southern California, USA, srivatsr@usc.edu;

Pierre-Louis Roman, USI Lugano, Switzerland, romanp@usi.ch.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/11-ART198

https://doi.org/10.1145/3428266

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3428266
https://doi.org/10.1145/3428266

198:2 B. Sang, P. Eugster, G. Petri, S. Ravi, and P.-L. Roman

example, in an online game, a player can explore an area by herself but can also interact with other
players. Thus it is important for programmers of such applications to be able to reason about (a)
parallelism (individual components executing independently) as well as (b) collaboration (multiple
components working together) and achieve a good performance compromise between the two.

Actors to the rescue. During the last decade, the actor [Agha 1990; Hewitt et al. 1973] model
has become yet more popular for implementing concurrent applications thanks to its remarkable
simplicity for achieving parallelism and collaboration. Parallelism comes naturally as actors a
priori do not share state with other actors and execute independently, yielding excellent potential
for scalability of distributed applications. Collaboration among actors can be implemented via
asynchronous message passing, with actors reacting to incoming messages from other actors.
This simplicity has motivated actor extensions and libraries for most mainstream programming
languages, e.g., Akka [Lightbend 2020] and Scala Actors [Haller and Odersky 2009] for Scala/Java,
Asynchronous Agents Library [Microsoft 2020a] and C++ Actor Framework [Charousset et al.
2016] for C++, and Akka.NET [akk 2020] for C# and F#. Several actor-based languages such as
Orleans [Bykov et al. 2011] have also been more recently proposed specifically for implementing
scalable networked distributed online services.

Beyond single messages. However, in many scenarios, it is useful if not necessary for programmers
to reason not only about individual messages, but in terms of compositions of such messages for
collaboration. A set of actors may be involved in multiple tasks which do not permit interleaved
execution between them (i.e., the tasks require strong consistency). The original asynchronous
łsingletonž messages in the actor model do not guarantee any execution order, and do not support
task isolation. Different extensions and variants of actors have thus been proposed. E.g., Synchro-
nizers [Dinges and Agha 2012; Frùlund 1996] allow (constraints on) message compositions to be
specified abstractly, independently from actors themselves. Several seminal works propose some
form of transactional actors (e.g., [Field and Varela 2005; Koster et al. 2015; Swalens et al. 2018]).

A thin line. As underlined by decades of research in distributed data management, care is required
when introducing strong consistency guarantees for message compositions, as this may necessitate
costly mechanisms whose overhead can hamper the potential for scalability of a programming
model ś especially across hosts communicating over a network. Synchronization protocols, re-
/un-doing of (partial) computations, etc. are easily abstracted in formal models or implemented
in single processes, but can introduce significant overheads in practice. Many popular databases
thus for instance offer snapshot isolation instead of stronger consistency models (e.g., Oracle,
PostgreSQL). Rather recently Orleans was augmented with a form of two-phase locking for strong
consistency [Orleans 2020], which however introduces high overhead as we show in our evaluation.

Scalable serializability over the network. Adding strong consistency to programming models for
networked distributed asynchronous environments in a way achieving scalability and guaranteed
progress (e.g., deadlock freedom) at the same time without hampering performance is challenging.
In this paper, we propose a novel actor-based programming model settling both ends of the
challenge. More precisely, we provide a model with serializability [Papadimitriou 1979] for multi-
actor programming, meaning messages issued as so-called events (i.e., requests) execute in an
isolated fashion. Our model is deadlock-free yet scalable as it enables decentralized coordination
that does not rely on rollbacks or transient inconsistencies. This is particularly important in the
context considered herein where communication between actors commonly takes place over the
network with latency orders of magnitude higher than in local interaction. The crux behind our
model is to streamline execution along an actor communication graph in the form of a directed
acyclic graph (DAG). Each actor is under the aegis of a unique dominator actor, according to its
position in the DAG, assigned in a dynamic manner (i.e., the DAG structure may change at runtime).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

Scalable and Serializable Networked Multi-actor Programming 198:3

The execution of events is partially serialized by those dominators: events executing on actors with
the same dominator are serialized there, while events on actors with different dominators execute
in parallel. Our model captures many useful application scenarios requiring strong consistency,
while still supporting a high degree of parallelism and thus scalability. When the DAG structure is
overconstraining, actors can issue calls outside it which are decoupled from their parent events.

Contributions and outlook. More specifically, the contributions of this paper are:
• a pragmatic actor-based programming model for implementing networked distributed online
services based on a dynamic DAG-inducing referencing discipline. Our model Ð implemented
in an extension to C++ dubbed AEONÐ introduces a high-level notion of events representing
serialized units of execution across actors, and several practical refinements. We illustrate
AEON through a multiplayer game app, demonstrating the need for serializability.

• a synchronization scheme that leverages the DAG-based structure to serialize event execution
and enable highly parallel execution in a dynamic manner.

• a characterization of properties Ð serializability and deadlock freedom Ð enjoyed by applica-
tions implemented in AEON.

• a study of the use of AEON and its different features across a wide variety of applications.
We discuss implementation choices for different consistency levels through the game app.

• a performance study of several applications (e.g., metadata storage, B-tree) implemented in
AEON, in particular distilling the costs of serializability. We compare AEON to state-of-the-art
specialized systems such as HyperDex Warp [Escriva et al. 2015] and Infinispan [Infinispan
2020], and to implementations in Orleans [Orleans 2020] on Amazon AWS [AWS 2020]. AEON
outperforms its competitors in most cases, and demonstrates much better scalability.

Roadmap. ğ 2 overviews and motivates our programming model. ğ 3 presents our programming
model in more detail. ğ 4 presents synchronization and properties of AEON. ğ 5 discusses imple-
mentation, optimizations, fault tolerance and the applicability of AEON. ğ 6 evaluates AEON’s
performance. ğ 7 discusses related work. ğ 8 draws final conclusions.

2 A PRIMER

This section presents the high-level design goals underlying AEON [AEON 2020], motivates them
through a concrete example, and gives an overview of how AEON addresses them.

2.1 Goals and Bird’s-Eye View

Actor Client

OwnershipServer

Event

Callback

Sync/Async Call

Fig. 1. AEON application overview.

AEON’s design targets the following high-level goals:
G1: Support scalable networked distributed (actor) pro-

gramming in a mainstream programming model.
G2: Enforce consistency (serializability) between concur-

rent events involving invocations across multiple actors
to avoid races between such events.

G3: Relieve programmers from error-prone manual locking
to prevent deadlocks between events.
To achieve G1 we augment the C++ programming lan-

guage with actors. In ğ 3 and ğ 4, we elaborate on how we
address G2 and G3 in a scalable manner.

Next we motivate the goals above and provide an overview of the main features of AEON through
the example of a multi-player game app that allows players (acting as clients) to manipulate their
avatars in an environment and interact with it. Fig. 1 gives an overview of an AEON application.
Clients issue events to actors which are distributed across multiple servers. Events in the AEON

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

198:4 B. Sang, P. Eugster, G. Petri, S. Ravi, and P.-L. Roman

1 actorclass Steakhouse {

2 vector<Cook> cooks;

3 vector<Grill> grills;

4 vector<Customer> customers;

5 ...

6 }

7 actorclass Cook { // Players are cooks

8 vector<Grill> grills;

9 vector<Customer> customers;

10 Customer cu;

11 int ckid;

12 ...

13 void cook(int orderSize, int cuid) {

14 cu = customers[cuid];

15 for (int i = 0 upto orderSize) {

16 Steak s = new Steak();

17 for (int j = i upto grills.size()) {

18 if (!grills[j].isUsed()) {

19 // 3 options: sync, async, event

20 grills[j].put(s, ckid);

21 // async grills[j].put(s, ckid);

22 // event grills[j].put(s, ckid);

23 break;

24 }}}}

25 void grillTimerRings(int gid)

26 { async cu.get(grills[gid].take()); }

27 }

28 actorclass Grill {

29 yield vector<Cook> cooks;

30 yield Cook cook;

31 Steak steak;

32 int gid;

33 ...

34 bool isUsed() { return cook != NULL; }

35 void put(Steak s, int ckid)

36 { steak = s; cook = cooks[ckid]; ... }

37 Steak take()

38 { ...; cook = NULL; return steak; }

39 void timedOut()

40 { event cook.grillTimerRings(gid); }

41 }

42 actorclass Customer {

43 yield vector<Cook> cooks;

44 int cuid;

45 ...

46 void giveOrder(int ckid, int nb)

47 { event cooks[ckid].cook(nb, cuid); }

48 void get(Steak s) { ... }

49 }

50 class Steak { ... }

Listing 1. AEON code snippet for a steakhouse simulation multiplayer game where players are cooks.

application are executed in a serializable manner. The return values of those events are passed back
to clients via callback methods. Programmers can specify high-level placement policies, e.g., on
collocation/separation of particular types of actors, or on limits for the number of collocated actors,
separately from the main program [Sang et al. 2020]. By default the runtime tries to collocate an
actor with its parents. In this paper we focus mostly on the server-side portion of AEON programs.

2.2 Scenario

The game app considered shares basic ideas with many simulation games. Lst. 1 sketches a possible
implementation in AEON, an extension of C++. The keywords appearing in green are new to AEON;
we use the syntactic form upto to iterate through a numerical range.

Users can manipulate their avatars (cooks) (Line 7) in a steakhouse to finish certain cooking tasks.
Consider possibly large numbers of cooks, steakhouses, and the other types of actors in this game.
Those actors are distributed across multiple servers to guarantee that there are enough resources
provided to this game. Steakhouses (Line 1) include different types of items (e.g., grills). Cooks
use those items to achieve certain cooking tasks. Different tasks require different sets of items.
However the number of items are limited and cooks have to share them in certain cases. Cooks
contend on one or more items at the same time. To avoid conflicts, it is important to guarantee
that cooks access items in an isolated manner in order to avoid inconsistencies such as multiple
acquisitions of the same item (G2) or deadlocks (G3). Besides, in a distributed environment, player
actors may interact with item actors on remote servers. Unlike concurrent programming [Lea
2005] on a single server, it is more difficult to implement isolation efficiently in an asynchronous
distributed environment (G1) as any invocation might take place over the network (cf. Fig. 1).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

Scalable and Serializable Networked Multi-actor Programming 198:5

Steakhouse

Cook

Grill

Morton's

Mike Bill

Bob

grill2

Customer

A

Actor class

Type A has a yield

field with type B

Actor

Actor a has a yield

reference to actor b

grill1

Type A has a field

with type B

Actor a has a

reference to actor b

A B

A B

a b

a b

a

Fig. 2. Actor type and actor ownership reference structures in the game app.

Consider two cooks in a steakhouse who are responsible for cooking steaks for customers. The
order of a table is sent to a cook who needs to put the required number of steaks on grills (one steak
per grill) at the same time such that all the customers of a table may be served at the same time.
Assume there are 10 grills in total and both cooks receive an order for 6 steaks. Because resource
availability check (Line 18) and resource locking (Line 20) are performed in separate instructions,
without proper synchronization, each cook may occupy only 5 grills and run into deadlock.

As another example, a table has ordered two kinds of steaks and one cook is responsible for one
kind. It is possible for both cooks to observe that the grills of the other cook are still empty, then
they pick up one kind for cooking randomly. A possible outcome without synchronization could be
that the two cooks have prepared the same kind of steak.

2.3 Actors

AEON’s actorclasses, declared for instance at Line 1 and Line 7, can be thought of as class-like
foundries for distributed objects Ð actors (G1) Ð that can contain data in the form of fields:

(1) Such fields can be of object (class) types, as is the case of Line 31 declaring a field steak, an
instance of class Steak declared at Line 50. Objects are passed by value so steak is guaranteed
to reside in the same address space as the actor instance of Grill that refers to it (Line 31).

(2) Unqualified fields of actor types can contain references to other actors, which at runtime may
be remote. E.g., at Line 3, field grills contains a vector holding references to Grill actors.

(3) An actor type field can be declared as a special yield field (Line 30). This is used for internal
events which are executed in isolation from the caller event.

łRegularž actor type references, i.e., references of type (2) above induce an ownership graph.
In short, AEON enforces that this graph is a directed acyclic graph (DAG) at the type level (actor
classes), thus enforcing the same at the instance level (actors). Fig. 2 depicts the reference structure
for both actor classes (left part) and actors (right part) according to our scenario and Lst. 1. As wewill
detail shortly, this graph is essential for AEON to efficiently execute methods concurrently invoked
on actors as part of events in a way avoiding inconsistencies (G2) and deadlocks without manual
locking (G3). Yield fields increase expressiveness beyond such a DAG, however with restrictions
regarding isolation: an actor invocation through such a field leads to an internal event which is
serialized separately from any calling event, as explained shortly in ğ 2.4.

2.4 Events

Like other languages designed for implementing Internet-facing applications (e.g., [Bykov et al.
2011; Chuang et al. 2013]), AEON follows an event-driven model, where clients of the system (e.g.,
users) interact with the server application by issuing events to the latter through calls, tagged in
AEON at the call site with the event keyword in front of the expression representing the target
actor of the event. For instance, by calling event cook.cook()(Line 47), a customer prompts the
cook to perform a cooking task, with cook the target actor of the event. Importantly, the execution

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

198:6 B. Sang, P. Eugster, G. Petri, S. Ravi, and P.-L. Roman

of an individual event is guaranteed to be isolated Ð more precisely, serialized Ð with respect to
other events. As detailed shortly in ğ 3, and based on the reference DAG structure in Fig. 2, the two
Cook actors (Mike and Bill) of Steakhouse will be assigned the same dominator actor (Morton’s).
All events have to access those actors in a synchronized manner by locking the dominator, thus
guaranteeing strong consistency and avoiding deadlocks. This means that steak cooking tasks
made by different Cooks on the same Grill will be executed in sequential order.
Note here when to call the Grill::put as sync or async method (Line 20 and Line 21), it will

execute as part of the Cook::cook event. In this scenario, Grill::put should better be called as
asyncmethod. Furthermore, the Grill::put can also be called as the eventmethod (Line 22), which
will generate an independent event. As foreshadowed, actor (class) methods can call other actor
methods, with actors being passed by reference, and objects passed by value, i.e., deep copying.

If not called as an external(ly issued) event by a client to the main application, an event call can also
be made within an event, which we refer to as an internal(ly issued) event. E.g., Grill::timeOut
makes an event call Cook::grillTimerRings to inform the cook that the steak is ready. Since
every method call is made directly or transitively in the context of some event, this call leads to a
łsub-eventž ś an independent new event executed after the caller event ends. We detail this in ğ 3.

As part of an event, actor methods can be called either synchronously (default) or asynchronously,
indicated with the async keyword at the call site. A synchronous call blocks the execution of the
event in the current actor until a result is obtained from the target actor upon return. Line 20 shows
an example of such a synchronous call, which needs to wait for the steak to be put on the grill.
Conversely asynchronous calls allow execution to proceed immediately, increasing parallelism. An
example of asynchronous call is given at Line 21: the cook puts multiple steaks on grills in parallel.

3 PROGRAMMING MODEL

This section presents the actor-based programming model of AEON in more depth. The abstract
syntax of AEON𝑚𝑖𝑛𝑖Ð a core sub-language of AEON Ð is shown in Fig. 3, and will be detailed in
the following paragraphs. For simplicity we omit from the syntax all the sequential aspects of C++
which are inconsequential with respect to the ideas presented in AEON.

3.1 Execution Model Overview and Core Principles

At a high level, AEON induces a two-level hierarchy of entities: actors and objects. The former are
accessed via reference, while the latter are treated as values. As mentioned program execution is
triggered by the receipt of a request from a client in the form of an external event, which is simply
the invocation, tagged as event, of an actor method. Any łregularž (i.e., non-event) nested method
invocation is executed as part of that event without interference of other events. Events can also
trigger other, internal, events. All such events are delegated until completion of the calling event.
This means that nested events do not execute logically as part of their calling events, but are rather
decoupled and serialized with respect to them. AEON guarantees serializability (G2) and deadlock
freedom (G3) with respect to all events. As foreshadowed in ğ 2, AEON achieves these goals in a
scalable manner through the following design decisions:

D1: Exploit application semantics, i.e., (constraints on) actor application topology induced through
references, for efficient synchronization. That is, the execution of events follows a DAG-based
arrangement of actors, exploiting this structure for automated, largely localized, lock-based
synchronization of actors. (Analyzing existing distributed applications, cf. ğ 5.4, we observed
that DAGs are common.) The DAG can be statically enforced by ownership at the type level.

D2: Induce a tree overlay for the DAG. Intuitively an actor ownership tree is easy to exploit for
synchronization, as any actor can only be reached by one path from the root Ð thus any two
events targeting a same actor can be serialized on the first node of any common path traversed

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

Scalable and Serializable Networked Multi-actor Programming 198:7

Method Names𝑚 ∈ M Field Names 𝑓 ∈ F Variables 𝑥,𝑦 ∈ V𝑎𝑟

Class Names 𝑐𝑙𝑠 ∈ C𝑙𝑠 Actorclass Names 𝑎𝑐𝑙𝑠 ∈ A𝐶𝑙𝑠

Program Definition 𝑝 ∈ P ::=
−−−→
𝑎𝑐𝑙𝑠𝑑

−−→
𝑐𝑙𝑠𝑑 main(. . .){ 𝑡}

Actorclass Definition 𝑎𝑐𝑙𝑠𝑑 ∈ A𝐶𝑙𝑠𝐷 ::= actorclass 𝑎𝑐𝑙𝑠 {
−→
𝑓 𝑑

−→
𝑚𝑑 }

Class Definition 𝑐𝑙𝑠𝑑 ∈ C𝑙𝑠𝐷 ::= class 𝑐𝑙𝑠 {
−→
𝑓 𝑑

−→
𝑚𝑑 }

Type 𝑇 ∈ T ::= 𝑎𝑐𝑙𝑠 | 𝑐𝑙𝑠 | 𝑇 [] | int | float | . . .

Field Definition 𝑓 𝑑 ∈ F𝐷 ::= yield? 𝑇 𝑓

Method Definition 𝑚𝑑 ∈ M𝐷 ::= ro? 𝑇 𝑚(
−−→
𝑇 𝑥) { 𝑡 }

Decorated Call 𝑑𝑐 ∈ D𝐶𝑎𝑙𝑙 ::= event | async

Term 𝑡 ∈ T𝑒𝑟𝑚𝑠 ::= 𝑑𝑐? 𝑡 .𝑚(®𝑡) | 𝑡 .𝑓 | 𝑥 | skip | return | this | . . .

Fig. 3. Abstract syntax of AEON𝑚𝑖𝑛𝑖 . Elements with ? denote options. ®𝑧 denotes several instances of 𝑧.

on the way there. While a DAG benefits from a topological ordering, it is more complex to exploit
it for serializability. We thus introduce a novel concept of dominator for serializing events.

D3: Extend expressiveness by allowing AEON applications to use references to actors bypassing
the DAG shape. However such references must be appropriately tagged (yield), and introduce
constraints regarding consistency in that calls through them give rise to separate events.

3.2 Actors and Objects

A program 𝑝 consists of class declarations 𝑐𝑙𝑠𝑑 , actor class declarations 𝑎𝑐𝑙𝑠𝑑 , and a main expression
main (inherited from the structure of C++ programs). An actor is a stateful point of service that
receives and processes requests in the form of messages from clients, directly (as external events)
or indirectly (via other actor instances). Actors encapsulate local state in the form of fields 𝑓 𝑑
and functionality in the form of exported methods𝑚𝑑 , as defined by their classes. Actor method
invocations 𝑑𝑐?𝑡 .𝑚(®𝑡) give rise to messages, and internal representations of actors can only be read
and/or affected through their methods (this.𝑓). Actors are implemented by the means of objects,
i.e., their internal states are captured by objects. Both actor classes and object classes can contain
actor type expressions, as shown in Fig. 3. However, an object class can only hold actor references
in yield fields. Actors can refer to each other by references. While actors are always passed by
reference, objects are always passed by value between actors. The former takes precedence, i.e., an
actor referred to by an object’s field will be passed by reference when passing the object. Objects
are passed by value even between collocated actors to avoid races.

3.3 References and Ownership

A pragmatic choice in our model is to streamline execution along graphs of a directed acyclic
nature induced by actor references within an application (at the exception of yield fields ignored
for now and discussed later in this section). The key idea behind our model is to determine the
set of actors which can be accessed by an event when it is issued. In an AEON application, one
event can only access an actor when this event has obtained the actor’s reference. Then, the event
can access actors referenced by the fields of the actor where the event is executing. Based on the
ownership graph, the AEON runtime system can verify whether the sets of accessible actors of two
events overlap. Our synchronization model introduced in ğ 4 ensures that such conflicting events
are serialized, while non-conflicting ones can proceed in parallel.

Asserting absence of cycles (D1). Absence of cycles is ensured by applying a conservative static
type-based program analysis. The type system keeps track of the types of fields and method

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

198:8 B. Sang, P. Eugster, G. Petri, S. Ravi, and P.-L. Roman

arguments which are of actor types (object types are not considered for this as they only contain
yield fields). E.g., an actor of type 𝑎𝑐𝑙𝑠0 cannot have a field of type 𝑎𝑐𝑙𝑠1 if 𝑎𝑐𝑙𝑠1 has a field of type
𝑎𝑐𝑙𝑠0. The analysis is simplified by disallowing inheritance/method overriding or subtyping for
actor classes, and by a strict separation of actor and object class hierarchies. Note that a small
exception is made for direct recursion by the use of runtime cycle checks which can be made fast
through their łlocalž nature (omitted from the formal language and in the following for simplicity).

From descendants to dominators (D2). To avoid deadlocks, AEON guarantees that whenever two
calls have the potential of affecting same actors, an order will be established to access these actors.
To that end, AEON leverages the topological order underlying DAGs. As several paths can lead to
an actor in such a graph, however, serializing events accessing same actors is more involving than
in a tree structure (e.g. [Blessing et al. 2017; Golan-Gueta et al. 2011], cf. ğ 7). We thus introduce a
novel notion of dominator. Intuitively, a dominator for a set of actors is the łlowestž actor in the
DAG traversed by all paths leading to any of those actors, or actors reachable from them. Thanks to
its position in the DAG, a dominator can be responsible for serializing events for this set of actors.
More precisely, ownership of actors in AEON can be described as a DAG Ω = (A,→𝑜), with

A representing the set of actors and thus vertices in Ω, and the relation →𝑜 representing edges

(ownership relations) between such actors. That is, if actor 𝑎0 has a reference to 𝑎1 in one of its
non-yield fields, then we have a directed edge 𝑎0 →𝑜 𝑎1.

Definition 1 (Parent and child actors). For Ω = (A,→𝑜) and 𝑎0, 𝑎1 ∈ A, if 𝑎0 →𝑜 𝑎1 we

say 𝑎0 is a parent actor of 𝑎1, and 𝑎1 is a child actor of 𝑎0. children(Ω, 𝑎) is the set of 𝑎 ’s child actors.

Definition 2 (Descendant actors). For Ω = (A,→𝑜) and 𝑎0, 𝑎1 ∈ A, if 𝑎0 →∗
𝑜 𝑎1 with →∗

𝑜

the transitive closure of →𝑜 , then we say 𝑎0 is an ancestor (actor) of 𝑎1, 𝑎1 is a descendant (actor) of
𝑎0, and 𝑎1 is reachable from 𝑎 . desc(Ω, 𝑎0) presents the set of 𝑎 ’s descendant actors.

An actor must be made a dominator when it does not share descendants with any other actor apart
from its own ancestors and descendants. We thus first define the notion of sharing descendants.

Definition 3 (Sharing). share(Ω, 𝑎) represents the set of actors which share descendants with 𝑎
in Ω = (A,→𝑜) and is defined as follows:

share(Ω, 𝑎) =
{

𝑎′ | children(Ω, 𝑎′) ∩ desc(Ω, 𝑎) ≠ ∅ ∧ 𝑎 ∈ desc(Ω, 𝑎′)
}

∪ (i)
{

𝑎′ | desc(Ω, 𝑎′) ∩ desc(Ω, 𝑎) ≠ ∅ ∧ 𝑎′ ∉ desc(Ω, 𝑎) ∧ 𝑎 ∉ desc(Ω, 𝑎′)
}

(ii)

That is, ∀𝑎′ ∈ share(Ω, 𝑎) we find actor 𝑎′ satisfies one of following conditions:

𝑎′

𝑎

(i) 𝑎′′

𝑎 𝑎′

(ii) 𝑎′′

Fig. 4. Conditions (i) and (ii) resp. of
share definition. Solid edge indicates
a child, dashed edge a descendant.

(i) 𝑎 is the descendant of 𝑎′, and has at least one descendant
that is a child of 𝑎′.

(ii) 𝑎′ has shared descendants with 𝑎 , but is not a descendant
of 𝑎 nor vice versa.

In condition (i), as shown in Fig. 4, actor 𝑎′ might be an ances-
tor of 𝑎 , but might still have a direct reference to one of 𝑎 ’s
descendants. Condition (ii) is needed to avoid considering all
ancestors of 𝑎 in their share set.1

For a given actor set A ′, we calculate the łlowest actor abovež all actors sharing descendants
with any 𝑎 in A ′, denoted dom(Ω,A ′) and dubbed A ′’s dominator, computed as the least upper
bound (lub) of the nodes in

⋃

𝑎 ∈A′ share(Ω, 𝑎) ∪ A ′ of Ω:

Definition 4 (Dominator). The dominator of actor set A ′ in Ω, dom(Ω,A ′), is defined as

dom(Ω,A ′) = lub
(

Ω,
⋃

𝑎 ∈A′ share(Ω, 𝑎) ∪ A ′
)

.

1Note that if in (i) 𝑎′′ is a descendant (not child) of 𝑎′, there is a 𝑎′′′ between 𝑎′ and 𝑎′′ that can be mapped to 𝑎′ in (ii).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

Scalable and Serializable Networked Multi-actor Programming 198:9

We focus on actor sets, as method calls can have actor references as arguments. Hence a called
method, or any method targeted by a nested call from it, can try to access such an argument or
any actor accessible from it. The dominator for a single actor 𝑎 can be straightforwardly derived
as dom(Ω, 𝑎) = lub(Ω, share(Ω, 𝑎)). These dominators induce a tree overlay for the DAG. As we
detail in the next section, the locking of any actor (set) is managed by its dominator.

In the special case of a DAG with multiple maxima without common ancestor the AEON runtime
system adds an abstract root actor as the parent of all such maxima. This way, the runtime system
can ensure the existence of a dominator for any actor in the program.

Illustration. In Fig. 2 (left), actorclasses Steakhouse and Cook łsharež (at the type level) actorclasses
Grill and Customer, and Cook is the łchildž of Steakhouse. Cook actors are likely to be dominated
by Steakhouse actors. As the right part of Fig. 2 shows, Cook actors Mike and Bill’s dominator is
Steakhouse actor Mortons. Mortons’s dominate region includes Mike, Bill, Bob, 𝑔𝑟𝑖𝑙𝑙1, and 𝑔𝑟𝑖𝑙𝑙2.

Yield fields (D3). As explained above, actor references define the shape of the runtime DAG of an
AEON application. To increase expressiveness, AEON allows fields to be declared with an optional
yield qualifier, which means that an actor referenced by such a field is not a child (or owned) by
the current actor. Thus such fields can be of types which bypass the type-level DAG. In fact all
fields of clients are treated as yield fields. As we elaborate on shortly in ğ 3.4, yield fields however
only support (new) event calls, such as to retain AEON’s properties.

3.4 Actor Methods and Events

Actors interact via messages induced by invocations to methods on actors. (We focus on these
methods here.) Method declarations have a return type 𝑇 , a method name𝑚, a sequence of formal
arguments of the form 𝑇 𝑥 , a body term 𝑡 , and, optionally, a leading ro modifier denoting readonly

methods. Actor methods can invoke other actor methods in a nested manner as part of their body 𝑡 .

Call types. More precisely, AEON offers three types of calls Ð standard synchronous calls and
two types of decorated calls denoted by 𝑑𝑐 in the syntax (cf. Fig. 3):

(1) Standard method calls in AEON are synchronous, denoted by the usual dot notation: 𝑡 .𝑚(𝑡).
Our model ensures that these calls are not subject to deadlocks.

(2) Similarly to the basic actor model, method calls can be asynchronous: async 𝑡 .𝑚(𝑡). Here the
caller continues straight after the call rather than waiting until the call completes.

(3) Method calls tagged as events are (i) external(ly issued) asynchronous requests from clients
to a (server) application actor or (ii) internal(ly issued) asynchronous requests from other
actors typically but not necessarily through yield fields. Both types of events are executed in
a serialized manner. Events in (3.i) define the external (client) API of an AEON application.

Nested events, yield fields. Nested event invocations (3.ii) are not a part of the current event, but
are executed after completion of the current event. Calls on yield fields must be tagged as events
or the compiler raises an error. Just as with asynchronous calls (2), return values of events cannot
be accessed. Results of events are passed via callback events. To that end (client) actors can pass
references to themselves as arguments to (external) events. This also allows for multiple results.

Effects. Our model includes readonly methods as they can execute in parallel on a same actor. The
AEON compiler conducts a simple static analysis to ensure that methods tagged as ro do not perform
assignments to actors’ fields or calls to non-readonly methods. As for asserting the DAG shape, the
analysis is simplified by the absence of actor inheritance and subtyping; the code for a readonly
method call is exactly known. However, readonly methods can also be called asynchronously, or as
events, which may seem counter-intuitive since the return values are then not accessible. As alluded
to above, AEON supports a programming style where returns of events and asynchronous methods

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

198:10 B. Sang, P. Eugster, G. Petri, S. Ravi, and P.-L. Roman

Table 1. Summary of AEONmethod call semantics for all types of calls 𝑑𝑐?𝑥 .𝑚(...) of methods ro? T𝑚(...) on

fields yield? 𝑇 ′ 𝑓 with 𝑇 ′ an actor type. łExternalž indicates calls from clients and łinternalž all other calls.
łCallbackž indicates that the caller cannot access any return value; instead the callee can send returns through
callback methods; łincludedž means the method is executed as part of the caller event while łserializedž
indicates the method will be executed as separate event.

Caller Call (𝑑𝑐?) Field (yield?) Method (ro?) Result Blocking Execution

External event yield Any Callback Non-blocking Serialized

Internal non-ro event Any Any Callback Non-blocking Serialized

Internal ro event Any ro Callback Non-blocking Serialized

Internal non-ro Sync Non-yield Any Return (𝑇) Blocking Included

Internal non-ro async Non-yield Any Callback Non-blocking Included

Internal ro Sync Non-yield ro Return (𝑇) Blocking Included

Internal ro async Non-yield ro Callback Non-blocking Included

are handled via callbacks. When such callbacks are made to clients, these may have side-effects yet
can still be made by readonly methods, which otherwise can only call other readonly methods. The
ro qualifier thus refers to server-side code. Other (i.e., non-readonly) methods can modify fields of
type (2) introduced in ğ 2.3 Ð non-yield actor type fields. As they define ownership between actors,
methods performing such assignments change the →𝑜 relation in the actor DAG Ω = (A,→𝑜):

Definition 5 (Ownership method and event). If method𝑚 updates non-yield actor type fields,

𝑚 alters →𝑜 of the actor DAG Ω = (A,→𝑜), and is thus called an ownership (altering) method. If𝑚
executes as part of event 𝑒 , 𝑒 is called an ownership (altering) event.

Tab. 1 summarizes the different features of method calls in AEON and their composition. For
example, as shown in the 2nd row, an internal non-ro caller Ð a (non-client) actor method which is
not declared as readonly Ð can issue an event through any (yield or non-yield) field to any (readonly
or non-readonly) methods; any return values are not accessible, so returns must be handled via
explicit callbacks, yet the caller will not be blocked and the call is treated as an independent event.
As per the 5th row, in a similar calling context, asynchronous calls are only permitted through
non-yield fields (as yield fields can only be used for event calls), and will not block yet, still execute
as part of the same ongoing event (included). Clearly the only distinctions made on the caller/calling
context are statically determined (internal vs external, readonly vs non-readonly).

Target(s). We refer to the target actor of an event (internal or external) as the actor which the
event method is called on. However, an event will always be sent to the dominator of the set of
actors including target actor and any actors passed as arguments to the event. This dominator is
determined by the AEON runtime when the event is issued, following Def. 4.
Note that for simplicity we made it sound so far like all calls on actors were issued directly

through actor fields. It is easy to see how all analyses for determining permissible call types can be
made also on formal arguments and returns of methods, and in fact any expression (e.g., vector
access Line 21 in Lst. 1): ro is a characteristic of the called method, the call decorator 𝑑𝑐 determines
whether a return value can be accessed, and the type-based analysis determining whether a field
must be tagged as yield can be applied to any expression.

3.5 Designing AEON Programs

When designing AEON applications, programmers should keep the DAG structure in mind. That
means, knowing which descendants an actor class may share with other actor classes to get a
perception of dominators. Understanding at the actor class (type) level (i.e., the left side of Fig. 2)
suffices mostly. Our experience shows the number of actor classes and their referencing interactions

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

Scalable and Serializable Networked Multi-actor Programming 198:11

is limited making this tractable (cf. ğ 5.4). Some care is required for sharing of actors among actors
of the same class, which the type-level DAG does not reveal. While sharing can affect performance Ð
less sharing means more dominators which increases efficiency by allowing more events to execute
in parallel Ð DAG violations are detected and notified by the compiler. Concrete dominator actor
instances are determined by the runtime based on the current DAG structure. E.g., following the
example in Fig. 2, assume the Steakhouse actor class has the (unshown) Street actor class as a
unique parent. Assume that Cook and Customer actors are not shared among different Steakhouse
actors. Here, a Cook actor’s dominator can be a Steakhouse actor but can never be a Street actor.

The yield qualifier is intended for scenarios when programmers do not need serializability includ-
ing events/calls through such fields, in which case parallelism can be increased by correspondingly
annotating them, or when the DAG constraint might get violated.

4 MULTI-ACTOR SYNCHRONIZATION

After providing an overview and basic definitions (ğ 4.1), we present synchronization in AEON
for a static ownership DAG (ğ 4.2), followed by a dynamic ownership DAG (ğ 4.3). In both cases, we
introduce synchronization and discuss how AEON achieves serializability [Papadimitriou 1979] of
concurrent events’ execution. For brevity we omit optimizations (e.g., parallel execution of readonly
events) and relaxations (e.g., allowing actors to access their descendants beyond direct children).

4.1 Overview and Basic Definitions

Simply put, AEON leverages D1 and D2 for event serialization via automated locking as follows:

(1) When called by an actor 𝑎 as part of an event 𝑒 , an actor 𝑎′ is first locked for 𝑒 by 𝑎 , unless it
is already locked for 𝑒 .

(2) Events traversing the same actor 𝑎 are serialized at that actor 𝑎 , and passed in the same order
along to any called child actor 𝑎′ by locking 𝑎′ in the same order.

(3) When starting a new event by calling an actor 𝑎 the event is sent to 𝑎 ’s dominator, unless the
call involves 𝑎1, ..., 𝑎𝑛 as arguments: then the dominator is chosen for the set {𝑎, 𝑎1, ..., 𝑎𝑛}.

Note that the second case of (3) implies that any actor which is passed as argument to a nested
call within an event is also dominated by the original dominator of the event start (cf. (2)).
In what follows we will be using these two basic definitions:

Definition 6 (Static and dynamic ownership). Let (𝐸,Ω) denote a system configuration

resulting from an execution of an AEON program, with 𝐸 the set of issued events and Ω the ownership

DAG. We say that (𝐸,Ω) is a static ownership configuration if 𝐸 does not contain any ownership

event, otherwise a dynamic ownership configuration.

Definition 7 (Serializability). Let 𝐸 denote the set of events in a given execution of AEON. We

say that the execution is serializable if there exists an equivalent serial (i.e., sequential) execution
respecting the temporal relations among the same set of events 𝐸. The temporal condition stipulates

that for any two events {𝑒1, 𝑒2} ∈ 𝐸, if 𝑒1 precedes 𝑒2 in real-time in the concurrent execution, then 𝑒1
precedes 𝑒2 in the equivalent serial execution.

4.2 Synchronization under Static Ownership

Traditional mechanisms for synchronization like two-phase locking (2PL) enforce serializability
on linearly-ordered structures without shape constraints while two-phase commit is best suited
when majority voting is necessary for agreement [Bernstein et al. 1987]. Both approaches require
non-trivial synchronization which becomes costly across remote parties. Unlike these mechanisms,
the synchronization technique developed for AEON exploits the DAG structure to rely on a two-step

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

198:12 B. Sang, P. Eugster, G. Petri, S. Ravi, and P.-L. Roman

Actor a
1

Actor a
3

Actor a
2

Actor a
4

Dominator

Non-dominator

Parent-child dominatorActor a
5

Dominate region

Ownership

Actor a
6

Actor a
7

Actor a
8

…

Fig. 5. Example of dominate region of actor 𝑎1:
actor 𝑎4 is a child dominator of 𝑎1 because 𝑎2 is
its parent and 𝑎2 is dominated by 𝑎1. Note how
the child dominator 𝑎4’s children actors 𝑎6 and
𝑎7 are not included in 𝑎1’s dominate region.

(1) (2) (3)

a
1

e
1

Region locking queue

Actor locking queue

Event

Dominate region

a
2

a
3

a
4

a
5

e
2

a
1

a
2

a
3

a
4

a
5

e
2

a
1

a
2

a
3

a
4

a
5

e
1

e
1

e
1

Actor a
1

Actor a
1

Actor a
1

e
2

e
1

e
1

e
2

e
2

e
1

Fig. 6. Basic AEON synchronization. 𝑒1 and 𝑒2 are put
into region locking queue (1). 𝑒1 is then dequeued and
put into actor locking queues of reachable actors (2). 𝑒2
is then dequeued and put into actor locking queues (3).

locking mechanism and multiple FIFO queues implemented at (dominator) actors to enforce partial
ordering across events. Before we explain the runtime synchronization for multi-actor semantics,
we introduce the following crucial terminology:

Definition 8 (Parent-child dominator and dominate region). For dominators 𝑎1 ≠ 𝑎2 we

say 𝑎2 is the child dominator of 𝑎1, or 𝑎1 is the parent dominator of 𝑎2, when 𝑎2 is a descendant of
𝑎1, and there is no dominator actor 𝑎3 such that 𝑎2 a descendant of 𝑎3 and 𝑎3 is a descendant of 𝑎1.

Given a dominator 𝑎1, its dominate region is defined as the set of actors consisting of the (1) actors

dominated by 𝑎1 (including 𝑎1) and (2) the child dominators of 𝑎1 (cf. Fig. 5).

Basic synchronization protocol. First off,AEON uses two types of FIFO queues on every (dominator)
actor: (1) a region locking queue for the actor’s dominate region; (2) an actor locking queue for each
actor in the region. (1) is used to guarantee that events enter the dominate region in sequential
order, while (2) control locks on the corresponding actors.

Intuitively when an event targets a set of actors, it executes from the corresponding dominator
𝑎1 downwards. Following the DAG, the runtime can find paths from 𝑎1 to those actors. At every
dominator łbelowž 𝑎1, other events may arrive. Thus every dominator serializes events in its
dominate region and then dispatches them to its child dominators:

(1) When an event arrives at a dominator 𝑎1 it needs to lock that dominate region at first. To
that end the event is first placed into the region locking queue of 𝑎1.

(2) When the event becomes the head of that queue, it is removed and put into the actor locking
queues of: (i) 𝑎1 and (ii) any actor 𝑎2 reachable from 𝑎1 in this dominate region. Note that
actors in (ii) are only łpre-lockedž in case the event executes in them.

If 𝑎2 is a child dominator, the event is forwarded to 𝑎2 and put into its region locking queue. An
event executes in the involved actors in a dominate region. When the event finishes execution in
those actors, it is removed from all actor locking queues (it is enqueued on) on the dominator. The
event can propagate downwards and execute in actors beyond this region as per the event logic.

Illustration. In Fig. 6, event 𝑒1 tries to execute on actor 𝑎2 while 𝑒2 is targeting actor 𝑎3. Initially,
𝑒1 and 𝑒2 are placed into 𝑎1’s region locking queue (1). 𝑒1 is removed from the region locking queue
and put into actor locking queues of 𝑎2, 𝑎4, and 𝑎5 (2) since 𝑎4 and 𝑎5 are reachable from 𝑎2 while
𝑎3 is not, so 𝑎3 is not affected by 𝑒1. 𝑒2 is then removed from the region locking queue and put into
actor locking queues of 𝑎3, 𝑎4, and 𝑎5 (3) since 𝑎4 and 𝑎5 are reachable from 𝑎3. Finally when 𝑒1
becomes the head of 𝑎2’s actor locking queue, 𝑒1 can execute in 𝑎2, but when 𝑒1 tries to execute
in 𝑎4 and becomes the head of 𝑎4’s actor locking queue, 𝑒1 will be forwarded to 𝑎4 (i.e., 𝑎4 is a

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

Scalable and Serializable Networked Multi-actor Programming 198:13

…

a
1

a
5

Actor a
1

e
2 e

3

…

a
5

Actor a
5

e
1

e
2

Region locking queue

Actor locking queue

Event

Dominate region

Fig. 7. Event execution order in child dominator’s
region. 𝑎5 is a child dominator of 𝑎1. 𝑒2 is the head
of the actor locking queue of 𝑎5 in 𝑎1’s region. Thus
𝑒2 will be put into the region locking queue of 𝑎5.

(1) (2)

a
1

e
3

a
2

a
3

a
4

a
5

e
4

a
1

a
2

a
3

a
4

a
5

Actor a
1 Actor a

1

e
1

e
1

e
1

e
2

e
2

e
2

e
3

e
4

Region locking queue

Actor locking queue

Non-ownership event

Dominate region

Ownership event

Fig. 8. Ownership event 𝑒3 waits until all previous
events (𝑒1 and 𝑒2) finish (1) and starts to execute (2).
𝑒4 can only be put into actor locking queues after 𝑒3
is done and removed from the queue.

child dominator). Note that in (3) 𝑒1 and 𝑒2 are the heads of actor locking queues of 𝑎2 and 𝑎3
respectively, so they can execute in parallel in 𝑎2 and 𝑎3.
Observe that the actor locking queue of child dominators in their parent dominator’s region is

used to control the order in which events enter child dominators’ regions from parent dominators’
regions. Those events still need to obtain exclusive locks on the former regions separately since
they can access a dominate region either from parent dominators’ regions or as direct targets. As
Fig. 7 shows, 𝑎5 is a child dominator of 𝑎1. Events 𝑒2 and 𝑒3 are entering 𝑎5’s dominate region from
𝑎1’s dominate region, while 𝑒1 lands in 𝑎5’s dominate region directly. When 𝑒2 becomes the head of
𝑎5’s actor locking queue on 𝑎1, 𝑒2 is forwarded to 𝑎5 and put into its region locking queue. When
𝑒2 finishes execution in all actors in the dominate region of 𝑎1, 𝑒2 is removed from all actor locking
queues in 𝑎1’s region. Note that 𝑒2 may be still executing in other actors in 𝑎5’s region but finished
executing in 𝑎5, and that these actors in which 𝑒2 is executing are not included in 𝑎1’s region.

Serializability in a single dominate region. We argue for serializability by showing that no two
events in a given execution of AEON are interleaved. Since an event 𝑒 can only execute in an actor 𝑎
when 𝑒 is the head of 𝑎 ’s actor locking queue, and 𝑒 will not be removed until it completes execution
within the dominate region, subsequent events are put on hold.

Consider the event execution order in actors of one dominate region. According to the synchro-
nization protocol above, when an event 𝑒1 becomes the head of a region locking queue, it will be
immediately put into the actor locking queues of any actor 𝑎1 that 𝑒1 is targeting and actors that can
be reached from 𝑎1 in the dominate region. Since events follow the ownership DAG top-to-bottom
to access actors, 𝑒1 can only access actors reachable from 𝑎1 there. Assume there exists an actor 𝑎2
in the same dominate region that 𝑒1 can access and 𝑎2 is not reachable from 𝑎1. Then (i) 𝑎1 must be
reachable from 𝑎2 or (ii) there is 𝑎3 which both 𝑎1 and 𝑎2 are reachable from. In (i) 𝑒1 will be put
into the actor locking queue of 𝑎1 when it tries to lock 𝑎2; in (ii) 𝑒1 will be put into actor locking
queues of both 𝑎1 and 𝑎2 when it tries to lock 𝑎3. In Fig. 6 (3), 𝑒2 will execute in 𝑎3 and it is put
into actor locking queues of 𝑎4 and 𝑎5 since 𝑎4 and 𝑎5 are reachable from 𝑎3.
Finally, as the region locking queue is a FIFO queue, any two events executing in a dominate

region are dequeued in sequential order. As an event is placed into actor locking queues of all
accessible actors when it is thus dequeued, two events’ order in any actor locking queues will be
the same as their order in the region locking queue. Thus any two events in a dominate region will
execute in any actor in the same order and will not interleave.

Serializability across dominate regions. By following the DAG an event can only access dominate
regions which are reachable from its current dominate region. By showing that two events have

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

198:14 B. Sang, P. Eugster, G. Petri, S. Ravi, and P.-L. Roman

the same execution order in a dominate region and its child dominator’s region, we can inductively
argue that those two events have the same order in all dominate regions.

Assume two events 𝑒1 and 𝑒2 are accessing dominator 𝑎2 from an actor 𝑎3, which is dominated
by 𝑎1. Then 𝑎2 is a child dominator of 𝑎1 and is in the dominate region of 𝑎1. 𝑒1 and 𝑒2 are put into
the actor locking queues of 𝑎2 when they are dequeued from the region locking queue of 𝑎1. When
𝑒1 (or 𝑒2) becomes the head of 𝑎2’s actor locking queue (on 𝑎1), it is forwarded to 𝑎2 and put into
𝑎2’s region locking queue. Clearly, 𝑒1 and 𝑒2 are in the same order in 𝑎2’s region locking queue as
in 𝑎2’s actor locking queue (on 𝑎1), because 𝑒1 will not be removed from 𝑎2’s actor locking queue
(on 𝑎1) before it finishes execution in 𝑎2. In Fig. 7, 𝑎5 is a child dominator of 𝑎1. 𝑒2 is before 𝑒3 in
𝑎5’s actor locking queue on 𝑎1. 𝑒2 will thus be put in 𝑎5’s region locking queue (on 𝑎5) before 𝑒3.

Unlocking actors and early unlocking in async methods. A dominator manages the locking and
unlocking of all actors in his dominate region. Then all actors’ locking queue are placed on the
dominator. When an event becomes the head of an actor 𝑎 locking queue, this event is locking 𝑎
and can execute on 𝑎 . When the event finishes its execution on 𝑎 , 𝑎 ’s dominator is informed. The
dominator, in turn, tags the event as unlock in 𝑎 ’s actor locking queue. If the event is not locking
any ancestor of 𝑎 , the event is removed from 𝑎 ’s actor locking queue. Once an event is no longer in
any actor locking queue on a dominator, we say the event left the dominate region.

Async methods allow early unlocking in dominate regions. Assume an event 𝑒 makes an async
call from actor 𝑎 to 𝑎′. 𝑒 continues execution on 𝑎 without waiting for 𝑎′ to be locked. When 𝑒

finishes execution on 𝑎 , the dominator is told to unlock 𝑎 even if 𝑒 is still executing on 𝑎′.

Event commit. When an event 𝑒 updates an actor 𝑎 , 𝑒 does not modify 𝑎 directly. 𝑒 instead creates
a copy of 𝑎 and updates that. Once 𝑒 releases the lock on 𝑎 , the subsequent event 𝑒 ′ creates a copy
of 𝑎 from 𝑒’s copy. When an event finishes all execution, it needs to commit in all actors it executed
on in the reverse accessing order. This guarantees that an event 𝑒 commits in an actor 𝑎 after 𝑒
finished executing and committed in all 𝑎 ’s descendants. When 𝑒 commits on 𝑎 , 𝑎 is overwritten
by 𝑒’s copy of 𝑎 . If 𝑒 fails midway, all 𝑒’s copies and following events’ copies are discarded.

4.3 Synchronization under Dynamic Ownership

In our model, an event can include several ownership modifications, i.e., addition or removal, of
ownership between two actors (field re-assignments incur two modifications).

Synchronization protocol. Ownership events (cf. Def. 5) are checked statically by the AEON
compiler. For any ownershipmodification, the ownership event involves locking both corresponding
parent and child actors by locking their dominators’ regions. As with non-ownership events,
ownership events are put into corresponding region locking queues. However, when an ownership
event becomes the head of such a queue, it is not removed and put into actor locking queues (unlike
other events). Instead, the event waits until all actor locking queues are drained to finally execute.
All following events in the region locking queue are blocked until this ownership event is finished
and removed from the queue. Ownership events therefore lock the whole dominate region during
their execution. Since no other event can execute in one dominate region while an ownership event
is being executed, no other event can observe (or suffer from) the DAG updating process.

As Fig. 8 shows, ownership event 𝑒3 first waits for 𝑒1 and 𝑒2 to finish executing in this dominate
region (Fig. 8 (1)). Eventually 𝑒3 is the head of the region locking queue (Fig. 8 (2)) and can execute; it
remains in the region locking queue until execution finished. During the execution of an ownership
event, the runtime determines actors whose dominators changed as a consequence, or have new
dominate regions, and informs them of DAG updates. Only thereafter is the ownership event
removed from the region locking queue. If an actor stops being a dominator or has a new dominate
region after DAG updates, it forwards events in its region locking queue to the new dominators.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

Scalable and Serializable Networked Multi-actor Programming 198:15

Actor a
1

Actor a
3

Actor a
1

Actor a
2

Actor a
1

Actor a
2

Actor a
3

(i)

(ii.1)

(ii.2)

Dominator

Parent-child dominator

Ownership

Dominate region

Fig. 9. Ownership events (i) modify ownership between
actors in 𝑎1’s dominate region; (ii.1) and (ii.2) modify
ownership between actor from 𝑎1’s dominate region
and another actor from 𝑎2’s dominate region.

Client Program Server ProgramAEON Pre-compiler

Client C++ Program Server C++ Program

C++ Compiler

AEON Client Library

Client Executable File
Server Executable File

AEON Runtime Library

Fig. 10. AEON implementation workflow.

Serializability under dynamic ownership. For serializability under dynamic ownership, we show
that ownership events do not affect the safety of event execution. In the following, we show this is
the case because ownership events lock all actors which may be affected by its ownership operations.
Let us consider the graph induced by the ownership DAG’s dominators and parent-child domi-

nator relationships. Clearly the ownership structure is a tree (cf. Fig. 9). Each tree node (dominator
in the DAG) serializes events executed in its dominate region. According to the synchronization
protocol, ownership events lock the whole dominate regions during their execution. When an
ownership event modifies an ownership, it must lock both corresponding parent and child actors
by locking their dominators’ regions. Fig. 9 depicts the two possible cases: (i) both actors are
dominated by the same dominator; (ii) the two actors are dominated by different dominators. For
(i), the ownership modification will not affect other dominators (and their dominated actors) since
it happens within one tree node (dominator) which is already locked by the event. For (ii), assume
the parent and child actors of the ownership are dominated by 𝑎1 and 𝑎2. There are two sub-cases
here: (ii.1) there is an actor 𝑎3 with paths to both 𝑎1 and 𝑎2; (ii.2) there is a path from 𝑎1 to 𝑎2. In
case (ii.1), potentially affected actors can only be actors dominated by dominators on the path from
𝑎3 to 𝑎1 or from 𝑎3 to 𝑎2, which are are all locked by the event. Similarly, in (ii.2), the event must
lock all dominators on the path from 𝑎1 to 𝑎2 and affected actors can only be actors dominated by
dominators on this path. Thus all affected actors are locked by this ownership event.
Thus non-ownership events are not affected by concurrent ownership events. As described, an

ownership event locks all actors which may be affected by its ownership operations. An ownership
event only starts executing when there are no other events executing in the region. For events
appearing before the ownership event in the region locking queue, the ownership operations only
happen after they leave this region, while events after the ownership event see the updated DAG.

Deadlock freedom (and starvation freedom). As deadlocks only happen when two events access
the same set of actors in different orders, they cannot occur in AEON. As explained earlier, any two
events will have the same execution order on any common affected actors. Assuming every event
finishes in a finite period of time, starvation freedom is guaranteed under static ownership: any
event in a region locking queue will eventually become the head and be placed into corresponding
actor locking queues. This event will also be the head of actor locking queues and eventually execute
in corresponding actors. Starvation is possible under dynamic ownership though if a non-ownership
event is continually forwarded to a new dominator following DAG updates via ownership events.
However, we remark that such executions are not uncommon for distributed transactional protocols
in which a writer interrupts a reader infinitely many times forcing starvation in order to preserve

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

198:16 B. Sang, P. Eugster, G. Petri, S. Ravi, and P.-L. Roman

strong consistency [Herlihy and Sun 2005; Kotselidis et al. 2008]. Note that deadlock freedom is
provided even in such a pathological execution as the ownership change terminates although the
non-ownership event is starved. We are currently working on a solution mitigating this situation.

5 IMPLEMENTATION AND APPLICATION

We overview AEON’s implementation and discuss optimizations, fault tolerance, and application.

5.1 Prototype

AEON is implemented as a pre-compiler and two libraries: (1) AEON runtime library and (2) AEON
client library. As Fig. 10 shows, programmers implement a server program and a client program in
AEON. The AEON pre-compiler processes those AEON programs into C++ programs; it handles
AEON’s special syntax (e.g., event) and generates code to handle (potentially remote) method calls
on actors. The C++ compiler then generates server executables from C++ server programs and (1),
and client executables from C++ client programs and (2). The two AEON libraries are implemented
in ≈40 kLoC in C++. The AEON pre-compiler includes ≈3 kLoC in Python and ≈4 kLoC in Perl.

5.2 Optimizations on Remote Communication

In a distributed setting, remote communication between servers is always a major source of runtime
overhead. We therefore implemented several optimizations to reduce remote communication.
Since dominators serialize events for actors within their dominate region, frequent communi-

cation between actors and their dominator can be expected. As the first optimization, the AEON
runtime attempts to collocate on the same server all actors of a dominate region such as to avoid any
remote communication between actors and their dominator. As the second optimization, dominators
lock actors in batches when possible to reduce the number of locking requests. For instance, when
an event requests a lock on 𝑎 to 𝑎 ’s dominator (cf. ğ 4.2), the dominator, in response, locks at once
every unlocked actor that this event is accessing, therefore avoiding individual locking requests to
be made by the same event on different actors. As our last optimization, the AEON runtime on a
server does not store the whole DAG structure but only the dominate region(s) affecting the actors
it is executing. Remote communication can thus be minimized when the DAG structure changes.

5.3 Fault Tolerance (FT)

Actors which failed due to process crashes are resurrected at a new host (or process). To that end
AEON takes consistent snapshots of actors, and loads the latest consistent state of a failed actor
when resurrecting it. Specifically AEON periodically takes global snapshots by sending a snapshot
event to the root actor. This event persists the state of all the actors starting from the root actor.
The event performs an async snapshot method call on all of the root actor’s child actors first, then
snapshot the root actor’s state. The event repeats this process in those child actors. Observe how
ensuring consistency Ð a non-trivial undertaking in general graphs [Aumayr et al. 2019] Ð is fairly
simple in our model as AEON guarantees serializability among all the events, and a snapshot event
runs like any other event. Moreover, by means of async semantics, a snapshot event can obtain
snapshots of the root actor’s descendants in parallel, minimizing the impact on system performance.
Advanced programmers can configure snapshots and manually trigger and manage them on select
parts of the DAG through an API. We assess snapshot overhead in ğ 6.9.
Events update copies of actors’ states (cf. ğ 4.2) to handle event failures, akin to failed/aborted

transactions, due to various logical errors (e.g., ownership cycles in recursive data structures,
cf. ğ 3.3) by discarding their updates. If an external event fails, the runtime calls a default error
callback method on the corresponding client. Callbacks issued during an event, like any nested
event, are only dispatched and executed on clients if and when the event completes server side.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

Scalable and Serializable Networked Multi-actor Programming 198:17

Table 2. Overview of applications re-implemented in AEON, their characteristics, and features used. łOwn-
ership constraintž denotes ownership structure, e.g., actors are organized as DAG or tree. For applications
involving multiple clusters, each cluster may have a different constraint; here we pick the strongest constraint.

Application Type
Ownership

constraint

Multiple

clusters

Uses

ro

Uses

async

Uses int.

events

Actor

classes
LoC

Game app App DAG No No No No 4 564

Bank account Finance Tree No No No No 4 176

zExpander𝑎 Caching Tree Yes Yes Yes Yes 3 506

Piazza𝑏 Course management DAG No Yes Yes No 5 259

BigTable𝑐 Store Tree No Yes Yes No 3 216

Cassandra𝑑 Store Tree No Yes Yes No 2 221

Metadata store Store Tree No Yes Yes No 2 552

Silo𝑒 Store DAG No Yes Yes No 7 1899

Skip list Data structure DAG No Yes Yes No 2 322

LSM𝑓 Data structure Tree Yes Yes Yes Yes 2 1587

B+ tree Data structure Tree No Yes Yes No 2 1457

B tree Data structure Tree No Yes Yes No 2 1437
𝑎 [Wu et al. 2016], 𝑏 [Technologies 2016], 𝑐 [Chang et al. 2008], 𝑑 [Lakshman and Malik 2010], 𝑒 [Tu et al. 2013], 𝑓 [O’Neil et al. 1996]

5.4 Application Study

We investigated a dozen applications of different types (e.g., caching, storage, data structures) and
re-implemented their core functionalities with AEON. This section briefly reports on experiences
gathered. Tab. 2 summarizes characteristics of applications and AEON features they used.

Consistency. Though weak consistency may suffice for many applications (e.g., social networks),
strong consistency (i.e., serializability) is necessary in many others to guarantee correct execution,
e.g., to transfer money from one bank account to another without loss or duplication, or to insert
two items into a B+ tree concurrently. Tab. 2 shows 12 applications that need serializability; 2
of those (Cassandra and game app) use several consistency levels. For all applications needing
serializability, we were able to naturally organize actors in a DAG, making AEON an ideal tool to
implement them. For example, in a multiplayer game (Lst. 1), users can manipulate their avatars
(i.e., cooks) to finish tasks in a steakhouse. Assuming cooks (players) are coordinating to prepare
dishes for one table in the steakhouse, and each cook is only responsible to prepare one kind of
food. Programmers can implement different variants of this functionality for different consistency
requirements. First assume cooks can decide which kind of dishes to cook by themselves, but each
cook must use different ingredients in their dishes. Then a cook cannot choose an ingredient that is
already used by other cooks. Then serializability is required. Otherwise, it is possible for customers
on a table to be served the same dish twice. Programmers must put all cooking method calls (i.e.,
sync or async) in a single event. If there is no constraint on used ingredients, programmers can
simply call event methods on individual Cook actors. Here, the cooking is executed independently
and can achieve much higher throughput, which we demonstrate shortly in ğ 6.

Method calls. Reviewing various types of applications has shown the benefits of readonly events,
especially in data store systems and data structures (e.g., BigTable, Cassandra, B+ tree, skip list) as
readonly requests constitute a major portion of requests in such applications. In AEON, multiple
readonly events can execute concurrently even within the same actors, which enhances throughput.
Most of the applications we investigated (10 out of 12, cf. Tab. 2) use readonly events.
Async method calls do not break serializability yet can enhance parallel execution within an

event. Cassandra is a typical example ś write requests need to update all ReplicaTable actors from

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

198:18 B. Sang, P. Eugster, G. Petri, S. Ravi, and P.-L. Roman

the MasterTable actor, and can only return thereafter. Intuitively, async calls make particular sense
in AEON given the streamlining for DAG-based ownership: actors often have several children of
the same type, and many updates across these children can be parallelized.

Distributed applications often consist of multiple clusters, which achieve different functionalities.
These clusters are not necessarily in a hierarchical relationship to each other. E.g., LSMs [O’Neil et al.
1996] include two separate B+ trees. Forcing a hierarchy to connect them can hamper performance
(and is not necessary, cf. ğ 3.3). The solution to process requests accessing multiple clusters (e.g.,
both trees) is trigger łnewž, internal events. Yield fields can be used to retain references to actors
of other clusters, and to issue such events. As Tab. 2 shows, this is exactly what happens in the
two applications with multiple clusters. Admittedly, several systems remain rather basic; adding
further features (e.g., more elaborate task/job/node trackers in MapReduce) is likely to add more
clusters, and thus increase the use of yield fields and internal events.
The next problem is to return results to clients (or internal actors) if their requests are served

by multiple clusters, thus involving multiple events. Though callbacks may be less simple to use
for programmers than direct return values (and we consider adding futures later), they solve the
problem of accessing multiple clusters efficiently, and can deal with multiple return values.

Note that programming with only yield fields and resulting internal events and callbacks is the
same as the original actor model with łsingletonž one-way asynchronous messages.

6 EVALUATION

In this section we evaluate the performance of (applications written in) AEON, by comparison to
several related state-of-the-art systems and frameworks.

6.1 Synopsis

Research questions. The goal of this evaluation is to answer the following questions:

RQ1 (ğ 6.2): How does AEON’s synchronization protocol compare to a basic synchronization
protocol like two-phase locking?

RQ2 (ğ 6.3): How does AEON compare to a łregularž actor language (no support for multi-actor
programming), achieving consistency by manually synchronizing?

RQ3 (ğ 6.4, ğ 6.5): How does AEON compare to using a storage system for shared state which
needs to be kept consistent?

RQ4 (ğ 6.5): How does AEON compare to actor languages with comparable properties?
RQ5 (ğ 6.6śğ 6.8): Howwell does AEON scale, considering different call types and DAG structures?
RQ6 (ğ 6.9): What is the overhead of mechanisms for FT used by AEON?

Comparisons. We use the following systems and languages in our experiments:

C++: For RQ1&RQ2 we use the same basic C++ distributed runtime used in AEON to show the
efficiency of AEON’s synchronization protocol. For brevity we refer to it simply as łC++ž.

Akka: For RQ2 we use Akka [Lightbend 2020] as it is a popular actor framework and well-suited
for distribution like AEON, yet does not provide built-in support for multi-actor synchronization.

Infinispan: For RQ3, we chose two leading łtransactionalž distributed storage systems for com-
parison ś the first is the (Java-based) Infinispan [Infinispan 2020] key-value store. Infinispan
is one of the most popular systems for caching, being used, e.g., by the JBoss [Red Hat 2020]
application server. Infinispan allows programmers to execute multiple read/write operations on
key-value pairs as one transaction. However, Infinispan follows the traditional execute-validate
mechanism and does not guarantee all transactions will be executed successfully. At least one of
two conflicting transactions have to abort, yielding an exception the programmer must handle.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

Scalable and Serializable Networked Multi-actor Programming 198:19

Table 3. Metadata store LoC.

Implementation LoC

AEON basic 552

HyperDex Warp basic 400

AEON MapReduce 390

HyperDex Warp MapReduce 296

Table 4. Game app LoC.

Implementation LoC

AEON 564

Infinispan 853

Orleans 434

Table 5. B tree LoC.

Implementation LoC

AEON original 1370

AEON optimized 1437

HyperDex Warp: For RQ3 we also use HyperDex Warp [Escriva et al. 2015], a next-generation
NoSQL store. Programmers can create multiple spaces (similar to database tables) and put, delete,
update objects in them. Each object is referred to by a unique key. Multiple objects (across spaces)
can be accessed in a transactional manner. When the runtime detects concurrent transactions
on the same objects, it aborts them and throws exceptions to clients.

Orleans: For RQ4, we use the Orleans [Bykov et al. 2011] distributed programming language
which is centered on a notion of actor-like grains. Orleans is actively developed by Microsoft,
and used in a number of projects including the re-engineered Skype and Halo [Microsoft 2020b]
applications. Until recently Orleans did not enforce consistency over multiple grains/actors.
Considering the need for consistency in many applications, the version 2.0 [Orleans 2020] started
supporting cross-actor transactions. We use transactions only where needed.2

Note that many actor languages and extensions have been proposed (several are discussed in ğ 7)
with designs overlapping with that of AEON. Languages and models designed and implemented
without support for distribution can however not be compared against here. This is not to say
that those could not be extended to a distributed scope, but doing so require addressing specific
non-trivial design questions. AEON’s model and synchronization protocol have been specifically
designed to minimize coordination over the network due to increased latency. Similarly, several
actor benchmarks (e.g., Savina [Imam and Sarkar 2014]) are geared towards, and implemented
for, concurrent single-process setups and it is not clear whether corresponding applications (e.g.,
thread ring, dining philosophers) are meaningful in the networked setups targeted herein.

Applications and settings. To compare against Infinispan and HyperDex Warp we have implemented
systems with the same features in AEON, or more directly applications with the same functionality
as applications built on top of these systems. For brevity we may simply refer to AEON (or any of
the approaches compared to) for a given application, rather than specifying both application and
approach used. Tab. 3, Tab. 4 and Tab. 5 compare the number of LoC used for the more involving
applications across the different approaches. The number of LoC must be treated with caution since
each approach uses a different language: AEON is extended from C++, HyperDex Warp provides
Python APIs, Infinispan is a Java package, and Orleans is based on C#. In addition, the levels of
abstraction also differ. For example, Tab. 3 shows that AEON’s programs have more LoC compared
to those in HyperDex Warp, yet programmers have to declare actor classes and implement actor
class methods in AEON, while they only need to create and access tables with built-in API functions
in the more specialized HyperDex Warp. It is thus reasonable to expect that the AEON metadata
store implementation requires more LoC compared to HyperDexWarp. We believe that the numbers
of LoC show that AEON does not impose high burden on the programmer.
The platform differences similarly affect the performance measurements. However, we believe

this effect is not as pronounced as one might expect, especially at larger scales where the overhead
of remote communication becomes more important compared to purely local processing speeds
(explaining why increasingly many distributed systems are implemented in languages like Java).

2Orleans’ transactional semantics are controlled by tagging variables whose accesses need corresponding synchronization.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

198:20 B. Sang, P. Eugster, G. Petri, S. Ravi, and P.-L. Roman

Fig. 11. Binary tree throughput. Unlike
AEON, C++ and Akka saturate with
growing client count.

Fig. 12. Latency of an app using AEON’s protocol vs a two-phase
locking in C++ with varying numbers of clients and servers.

In the performance comparison, we assess the performance of each framework via a set of driver
applications/workloads on AWS cloud. We investigate scalability of AEON by varying the number
of servers, and compare performance of different call types.
Each experiment is run entirely at least 3 times and averaged, with averaging also in runs.

FT We disabled snapshots in AEON when comparing with other systems, as these do not have com-
parable mechanisms. Orleans does not provide automatic FT in its transactional version. HyperDex
Warp claims FT [Escriva and Sirer 2016] yet the source code [HyperDex Warp 2020] includes no FT.
Infinispan supports replication for individual key-value pairs, but with no consistency guarantees
across key/value pairs in transactional mode, so we set its replication degree to 1.

6.2 RQ1: Two-Phase Locking in C++

While AEON has its own DAG-based synchronization protocol to serialize applications, developers
can obtain a similar degree of synchronization with other languages, albeit with more efforts, using
classic mechanisms such as 2PL. We compare AEON’s synchronization protocol against its closest
baseline, a 2PL implemented on AEON’s basic C++ runtime.
Assume an application consisting of multiple actors, each on a separate server. Clients issue

requests consisting in updating two randomly chosen target actors in an isolated manner. In the
łC++ž implementation, consistency is guaranteed by using 2PL. To avoid deadlocks as in AEON
though, all actors are sorted according to their id(entifier)s, and locking happens in increasing
order of id; for two chosen actors, any actor with smaller id than either of them has to be locked.
Then the client updates their states, and releases all locks. As this microbenchmark scenario has
no root, AEON creates an abstract root (cf. ğ 3.3), placed on the same server as one of the actors.
In addition to their respective synchronization protocols, both AEON and C++ implementations
include (write-ahead) logging of operations as used typically with 2PL for fault recovery. We
compare the client request latencies of the 2PL and AEON implementations on a setup where 1
to 4 clients send their requests to the applications with 1 to 8 actors. In the 1 actor setup, clients
only update 1 actor’s state. We deploy clients and actors on AWS m1.small instances; each are
deployed on their own instance. Fig. 12 shows the two implementations achieve close latencies
with 1-2 actors. However, AEON’s synchronization protocol clearly outperforms 2PL as the number
of actors increases, and even more so as the number of clients increases too.

6.3 RQ2: Manual Synchronization on Binary Trees in Akka and C++

Most actor programming languages such as Akka [Lightbend 2020] focus on providing highly con-
current execution with łsimplež asynchronous messaging. AEON is not thought of as a replacement
for these languages, but specialized for applications requiring serializability. We demonstrate the
benefits of its inherent serializability support over manual synchronization.
Assume multiple clients are issuing requests to a binary tree. Each request randomly picks a

path from the root node to a leaf node and accesses all nodes on the path from top to bottom.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

Scalable and Serializable Networked Multi-actor Programming 198:21

Additionally, all those requests must access the tree nodes in the same order. Simple asynchronous
messaging cannot guarantee that the arrival order of each request is the same as those requests’
send order. One request may leave a parent tree node after another request, and yet arrive at the
child node first. A simple, yet correct solution is to serialize the execution of requests by allowing
one request access at a time on the whole binary tree.

We implemented a 10-depth binary tree in (1) AEON (155 LoC), (2) Akka Scala (274 LoC) and (3)
on AEON’s basic C++ runtime (1510 LoC). (3) is used as an intermediate baseline between AEON
and Akka to isolate the benefits of C++, which AEON is based on, over the JVM, and those proper
to AEON. The binary tree implementation in (2) and (3) serializes all requests via the root node.
The tree is deployed on two AWSm1.medium instances. We enforce remote messaging by placing a
parent node on a different machine from its children. Clients are on another m1.medium instance.

As Fig. 11 shows, Akka and łC++ž outperform AEON with few clients because of the overhead of
AEON’s serialization protocol. This is due to the metadata and bookkeeping (with multiple queues)
leveraged by the AEON protocol for parallelism. However, with increasing numbers of clients,
the benefits of this fine-grained synchronization become apparent. AEON provides serializability
without sacrificing fine-grained parallelism. The experiment also shows AEON’s benefits are due
to its synchronization protocol and cannot just be ascribed to C++’s greater runtime efficiency.
We remark that it is possible to potentially improve the Akka (and C++) implementation of

the binary tree enforcing the execution order of requests with timestamps or with a distributed
locking mechanism (as discussed in ğ 6.2) or implementing a custom serializable protocol specifically
designed for the semantics of the binary tree operations [Ellen et al. 2010]. However, such approaches
require a deep understanding of distributed applications and non-trivial implementation efforts;
both of which can be avoided by using AEON as it requires no additional code for serializability.

6.4 RQ3: Metadata Store with HyperDex Warp

We compare the metadata store of the Warp Transactional Filesystem (WTF) [Escriva and Sirer
2016] implemented both in AEON and HyperDexWarp. WTF consists of four łtiersž: a client library,
a metadata store, a replicated coordinator, and storage servers. Only the metadata store requires
serializability so clients can update metadata of multiple files stored on the metadata store at a
time. That is, when a client tries to read, write, or manage a file, it first connects to the metadata
store to retrieve file information, and then connects to one of the corresponding storage servers
to access the file. WTF supports regrouping of accesses on multiple files, unlike other filesystems
(FSs) such as HDFS [Apache 2020], by using łtransactionsž in the metadata store, thus allowing
clients to update the metadata of multiple files (e.g., merge files) together.

Implementation. The metadata store for WTF is implemented using HyperDex Warp. In an FS, each
file and folder has a corresponding inode containing its metadata. Inodes reflect the hierarchical
structure of files and folders. However, HyperDex Warp is similar to a key-value store and cannot
inherently support a hierarchical structure. Consequently, HyperDex Warp stores each inode as an
object with the path of inode as key, and each folder inode includes the names of its direct child
inodes. In contrast AEON can easily support a hierarchical metadata store by simply organizing
actors (implementing inodes) accordingly.We compare the performance of the AEON andHyperDex
Warp metadata stores via common FS operations. In short, our AEON version outperforms the
HyperDex Warp version in most cases. All our experiments use AWS m1.medium instances.

Creating files in the same folder. In this experiment, the metadata store is deployed on one instance
while 4 clients are placed on another instance and all create files in the same folder. Fig. 13a shows
that AEON (AEON-SF) reaches a throughput of 180 conflict-free requests/s.
In contrast, to create a file in a folder in the HyperDex Warp implementation, a client adds the

newly created file as a child of that folder. Multiple clients creating files in the same folder all lock

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

198:22 B. Sang, P. Eugster, G. Petri, S. Ravi, and P.-L. Roman

(a) Create files in 1 folder. (b) Rename folders. (c) Open private inodes. (d) MapReduce.

Fig. 13. AEON vs HyperDex Warp metadata store.

the same folder inode resulting in concurrent updates and thus repeating aborts blocking all file
creations (HY-SF). To handle concurrent updates in HyperDex Warp, we had to add random delays
of 0-1 ms (HY-SF-D1), 0-2 ms (HY-SF-D2), 0-5 ms (HY-SF-D5), and 0-10 ms (HY-SF-D10) periods.

As shown, delays reduce conflicts between concurrent updates and allow progress. We note that
the HyperDex Warp implementation can outperform AEON’s when we introduce 0-2 ms random
delays (HY-SF-D2). Delays however exhibit a trade-off between operation throughput and latency:
small delays cannot alleviate conflicts while large delays increase latency. Moreover, selecting the
ideal delay is a tedious task since the chosen one must strive despite varying workloads.

Creating files in private folders.With the same setup, clients now create new files in their private
folders to avoid any conflict. As Fig. 13a shows, without conflicts, HyperDex Warp’s (HY-PF)
throughout is about twice as high as AEON’s (AEON-PF). In AEON, to create a new inode actor
and add it as some actor’s child, the runtime does not only need to create the actor, but also has to
update the DAG ownership structure, which results in greater latency.

Renaming folders. With the same setup, we now consider folder renaming in the FS. Each client
tries to rename their private folder. Fig. 13b shows the results for different directory depths, which
indicates the inode level under the client’s private folder. Each level includes two child inodes.
Observe that AEON has similar performance across depths as it only needs to update the name of
one inode, while its competitor has to update paths for all inodes of this folder as it relies on paths
of inodes to capture the hierarchy, thus degrading performance and increasing programming effort.

Open private inodes.We now consider the most common operations in an FS: single inode access
and update. HyperDex Warp allows clients to retrieve an inode via its path, which makes this
operation both simple and fast. AEON also allows clients to access an actor (i.e., inode) via reference
directly. In this experiment, we evaluate the scalability and maximum throughput for different
numbers of servers. Fig. 13c shows that both AEON and HyperDex Warp scale well for distributed
FSs, yet AEON supports higher throughput than HyperDex Warp at any scale, though being more
generic. This scenario gauges the performance of AEON when programming in the original actor
sense with łsingleton messagesž (cf. ğ 3.3), showing AEON’s performance is also appealing then.

MapReduce.We show the performance of AEON andHyperDexWarpmetadata stores while running
MapReduce [Apache 2020; Dean and Ghemawat 2008] jobs over the FS. We do not run the complete
MapReduce jobs but only simulate their operations on metadata store: (1) We only implemented
the metadata store in AEON as only this component is implemented by HyperDex Warp. No other
component requires serializability. (2) Compared to actual data reads/writes and computation in
MapReduce, metadata operations have low latency. Performance of store servers and computation
are out of scope. We thus focus on manipulation and creation of input, intermediate data, and
output files and reading/writing data from/to these. Each server hosts 3 mappers and 1 reducer.
There is 1 client submitting 1 job at a time, occupying all mappers and reducers.

Fig. 13d shows the time a MapReduce job takes to finish all operations in metadata store. AEON
clearly outperforms HyperDex Warp when multiple servers are used. For a single operation in the

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

Scalable and Serializable Networked Multi-actor Programming 198:23

Fig. 14. AEON vs Infinispan vs Orleans game app with varying workloads (%UseGrill / %NewGrill events).

metadata store (i.e., open a file), HyperDex Warp is only slightly slower than AEON. However,
there are, admittedly, other reasons why HyperDex Warp MapReduce is much slower than AEON:
(1) HyperDex Warp only provides APIs for Python while AEON is implemented in C++, and Python
usually performs worse than C++. (2) HyperDex Warp is a distributed store rather than a complete
programming language. Without non-trivial efforts of programmers to optimize important parts of
their implementation (e.g., thread pools, socket communication), the performance of a distributed
application is affected. AEON comes with built-in optimized versions of these basic features.

6.5 RQ3 and RQ4: Game App with Infinispan and Orleans

We compare AEON vs Infinispan [Infinispan 2020] and Orleans [Orleans 2020] on the game app.

Implementation and workloads. As both Infinispan and Orleans throw exceptions when updates
conflict, we introduce random delays of 1-10 ms and retry a certain number of times (e.g., 3×) when
clients learn that their transactions are aborted. In the game app (Lst. 1), Cooks can (1) put steaks
on Grills belonging to them (Line 13) generating a UseGrill event, and (2) abandon an owned Grill
to pick a new one (omitted from the code snippet) generating a NewGrill event. Note that NewGrill
events change the ownership DAG structure. We tested four workloads with different ratios of
events UseGrill/NewGrill: (a) 100%/0%; (b) 80%/20%; (c) 50%/50%; (d) 0%/100% (less realistic, used as
worst case). We initialize the app with as many Steakhouses as there are servers. Each Steakhouse
owns 10 Grills. Cooks are equally assigned to Steakhouses. Each Cook starts with 4 random Grills.

Throughput and scalability. We run the AEON, Infinispan, and Orleans game apps each on 8
servers with the four workloads. Fig. 14 compares app throughput across systems. AEON always
outperforms Orleans and Infinispan (except in one single-Cook case): AEON’s throughput is higher
and scales much better with an increasing number of Cooks per Steakhouse. As this number
increases, the chance of executing updates on the same set of actors also increases, leading to
contention. Those events may be aborted with Infinispan and Orleans, and exceptions thrown to
clients. An event may have to be retried several times, increasing latency and degrading throughput.

In our experiments, the performance of Orleans was far behind that of both AEON and Infinispan.
We also observed that the performance of transactional execution in Orleans degrades substantially
with the same operations compared to non-transactional execution. For instance, with one client
the transactional version of Orleans is 20-35× slower than the non-transactional one. While these
problems may be mitigated in future versions, they demonstrate the difficulties of providing
transactional guarantees with good performance. Similarly to the comparison between AEON and
Akka in ğ 6.3, platform differences alone do not seem to be able to explain the large differences.

Infinispan outperformed AEON at 1 player with workload (d), as NewGrill events update AEON’s
DAG. However, in all other cases, AEON outperformed Infinispan, especially for mixed workloads
(b) and (c), where events may conflict with each other on both Steakhouse and Grill actors. Thus
the throughput of Infinispan drops dramatically when more Cooks are added to a same Steakhouse.
Also this difference in trend to AEON is not due to mere technical differences.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

198:24 B. Sang, P. Eugster, G. Petri, S. Ravi, and P.-L. Roman

Fig. 15. Game scale-out. Fig. 16. Calls’ throughput. Fig. 17. Calls’ CPU usage. Fig. 18. Optimizing B tree.

6.6 RQ5: Game App Scalability

Scalability. In this experiment, we study how the ownership DAG helps the runtime system execute
events in a scalable manner, including dynamic changes of the ownership DAG itself. Fig. 15 depicts
the scalability of the AEON game app, with the same UseGrill/NewGrill workloads as in ğ 6.5, when
the number of servers increases from 2 to 32. As presented in ğ 4.3, ownership events (NewGrill)
always lock the dominator (Steakhouse), while other events (UseGrill) release dominators upon
execution. Hence the total throughput decreases as the percent of NewGrill requests increases. Since
the implementation of the distributed DAG structure guarantees that only related actors are affected
in NewGrill events, AEON’s game app scalability is ensured even with 100% NewGrill events.

Call types. In ğ 5.4, we discussed how to implement a cooking arrangement function in the game
app using sync(hronous), async(hronous) and event method calls for different consistency and
performance requirements. We measure the performance of each type of method call.

We set the game app with 1 Cook and 16 Grills deployed on 4 AWSm1.small instances, hosting 4
Grills each. The Cook keeps making put method calls on those Grills. We simulate put requiring
a certain amount of computation by adding 0, 5k, and 10k computation rounds in Grill::put.

Fig. 16 shows the throughput (i.e., number of method calls executed/s on all Grills) for different
types of method calls and computation loads. With little computation, async’s throughput is around
twice that of sync while the throughput of (separate sub-)events is almost 4 times higher than that
of async. Thus while async can improve parallel execution within a single event, this improvement
is limited by the overhead of synchronization. Serializability is not enforced across (sub-)events,
enabling higher throughput. Fig. 17 shows a maxed-out CPU limits this benefit with 10k rounds.

6.7 RQ5: B Tree

Here we substantiate how programmers can benefit from AEON’s serializability and readonly
events through B trees, popular indexing data structures in storage systems.

In the original B tree, every operation accesses the root node, thereby limiting overall performance.
Caching is thus a common optimization to improve performance (of B and B+ trees alike [Aguilera
et al. 2008], the difference being only the storage of data also on inner nodes for the former). The
cached information of inner nodes allows clients to forward operations to related nodes directly.
However, the cache-based B tree implementation requires serializability, or the expected semantics
of the B tree can get violated. E.g., inserting a key into a node which is to be merged at the same
time could lead to exceeding the maximum number of keys in nodes, or worse, lost data.

Implementation. Thanks to its serializability, programmers can implement an optimized B tree using
AEON without extra effort to sidestep the above-mentioned limitation. For comparison, we also
implemented the original B tree without caching information of any inner nodes on clients. In
addition, both versions can benefit from readonly semantics for read operations. As we have already
compared AEON to Orleans, and the latter does not provide readonly semantics, we dive into the
benefits of (1) lightweight serializability (enabling efficient optimized B trees without root-node

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

Scalable and Serializable Networked Multi-actor Programming 198:25

synchronization of all events) and (2) readonly semantics (acceleration on read-heavy workloads)
of AEON. Tab. 5 shows the number of LoC for the original and optimized AEON implementations.
The minor difference in LoC is due to the caching of inner nodes in the optimized version.

Scalability.We compare the scalability of the two implementations on a single AWS m1.medium in-
stance. A secondm1.medium instance was running from 1 to 8 clients. We follow the YCSB [Cooper
et al. 2010] benchmark, and use 2 types of workloads: write-heavy (50% read operations vs 50%
insert operations) and read-heavy (95% read vs only 5% insert). Each client starts by issuing 100
read operations as a warm-up. We repeated the experiments 3 times for all 4 combinations of the 2
implementations, OPTimized and ORIGinal, and the 2 YCSB workloads.

Fig. 18 shows mean throughput and mean latency of operations for all setups (legend:▼ 50%-OPT,
▲ 95%-OPT, + 50%-ORIG, X 95%-ORIG). As expected, the optimized version (1) outperforms the
original one for both workloads, scaling to more operations performed with shorter latency, while
the original version saturates much faster at its maximum throughput, and (2) shows the benefit of
readonly events on the read-heavy workload. The huge differences between the read-heavy and
write-heavy measurements cannot be explained by any inherent differences between read and
insert operations (i.e., RAM memory read/write speeds are similar [Wikipedia 2020]).

6.8 RQ5: DAG Structure Impact with Piazza

Fig. 19. Piazza scalability
with varied DAG structures.

We use Piazza, a university course management system, to assess scala-
bility under different DAG structures. Generally speaking, less sharing
among actors increases parallelism in event execution (cf. ğ 3.5). In
Piazza the DAG structure follows the natural hierarchy of a univer-
sity, i.e., a University has multiple Departments each responsible for
Courses which Students can register for. In this evaluation, we consider
three levels of actor sharing that lead to different DAG structures: (1)
One ś each student can register for at most one course, i.e., Courses
do not share Students. (2) Dep. ś students can register for multiple
courses in their department, i.e., every Course in a Department share the same set of Students but
Departments do not share Students. (3) Any ś all constraints are lifted so students can register for
courses in any department, i.e., every Department shares the same set of descendant Students.
As Fig. 19 shows, scalability is hindered in the Any case since there is only a single dominate

region for the entire application, thus eliminating parallel execution. Any is an extreme case used
to show the worst-case scenario. If we constrain students to only register for courses in a single
department (Dep. case), for instance students enrolled in a master’s degree, the application scales
well as each Department is a dominator for a set of Students, thus enabling parallelization. This
shows AEON programmers should be mindful of actor sharing at the level of an entire application.

6.9 RQ6: FT Overhead

We use a microbenchmark based on a tree to assess the overhead of snapshots. In the mechanism (cf.
ğ 5.3), DAG depth and the size of actors are two potential factors which may impact the performance
of the application when a snapshot is taken. The tree includes 1 root node and 30 tree nodes. We vary
the tree depth between 1, 2, and 4. In the first casewe have 1 (abstract, cf. ğ 3.3) root nodewith 30 child
nodes. In the second case, each tree node including the root node has 5 children (5 + 25 = 30 nodes). In
the third case, each tree node has 2 children (2 + 4 + 8 + 16). The size of actors at each node is varied
between 1kB, 100kB, and 1MB. In Fig. 20, 𝑥d-𝑦 indicates a tree depth of 𝑥 and actor size of 𝑦. The
application is deployed on a single m1.small instance. 30 clients are deployed uniformly on another
3 m1.medium instances. Each client picks a different tree node and keeps sending requests to it.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

198:26 B. Sang, P. Eugster, G. Petri, S. Ravi, and P.-L. Roman

Fig. 20. Snapshot overhead with var-
ied DAG depths and actor sizes.

Fig. 20 shows the latency of clients’ requests over time, with
the snapshot taken at ≈50s. We do not observe any perfor-
mance impact when the size of actors is ≤100kB (thus we
grayed out the plot lines and omitted measurements with
10kB). However, when the actors’ size increases to 1MB, the
snapshot results in much higher latency, as serializing large
actors requires more time and CPU resources. This evaluation
shows that actor size affects snapshot overhead more than
DAG depth. Upon recovery, actors are restored in parallel and
the DAG structure does not impact recovery performance. Restoring the tree (with 30 nodes) from
the snapshot generated in the experiments takes 1.1s, 5.94s, and 49.33s respectively for node sizes of
1kB, 100kB and 1MB. Clearly, the size of the actors determines the time to restore the application.

7 RELATED WORK

We summarize related work on actor-based programming models and specification, as well as
serializability in distributed systems (besides works already introduced in ğ 6.1).

Actor specification and verification. Synchronizers [Dinges and Agha 2012; Frùlund 1996] support
reasoning about multi-actor interaction through application-specific global constraints on message
consumption. Efficiency of implementation has not been investigated. Several works combine
behavioral typing with the actor model for guaranteeing coordination safety of actors. Neykova and
Yoshida [Neykova and Yoshida 2014] for instance introduce a Python library based on multiparty
session types, which allows programmers to specify and verify coordination among actors. Each
actor may take multiple roles in different sessions. Several other works apply formal methods to
actor languages (e.g., [Desai et al. 2013; Duarte 1999; Kurnia and Poetzsch-Heffter 2012; Poetzsch-
Heffter et al. 2011; Summers and Müller 2016]). P [Desai et al. 2013] for instance provides guarantees
verified via model checking. A more recent work [Summers and Müller 2016] provides a proof
system based on Hoare logic. Its verification phase includes reasoning about individual actors and
message passing among them. To guarantee certain invariants two types of permissions are used,
immutable and exclusive, which resemble AEON’s readonly and regular access modes respectively.
None of the above-mentioned works consider performance in a physically distributed deployment.

Actor(-like) languages, runtime enforcement. EventWave [Chuang et al. 2013] is a distributed language
based on actor-like contexts, targeting scalable cloud settings like Orleans (cf. ğ 6.1). EventWave
induces a strict single ownership tree among actors/contexts where all requests are serialized at
the root node, voiding scalability potential. Moreover, the topology is static, i.e., programs cannot
change actor variable bindings. AEON is a follow-up work to EventWave inheriting its notion of
context [Sang et al. 2016]. While removing some of the restrictions of EventWave (e.g., relaxing
from a tree to a DAG), AEON originally retained most others (e.g., a simple synchronization protocol
without dynamic ownership). Just as with EventWave, its programming model and synchronization
protocol are only presented in a high-level manner, without clear guarantees, practical considera-
tions, refinements, or discussion of applicability. PLASMA [Sang et al. 2020] adds a second łlayerž
of programming to languages like AEON or Orleans for system programmers to specify policies
guiding the runtime in (re-)distributing actors in the face of workload fluctuations, thus improving
placement. Orleans also allows initial placement to be configured [Newell et al. 2016].

Several authors have also leveraged topology restrictions to improve non-distributed concurrent
programs. E.g., Golan-Gueta et al. [Golan-Gueta et al. 2011] focus on heap-allocated data structures.
It is unclear what performance characteristics would be observed in the networked distributed
settings considered herein, which present different bottlenecks than shared memory. Blessing et

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

Scalable and Serializable Networked Multi-actor Programming 198:27

al. [Blessing et al. 2017] exploit topology for message delivery in networks, but focus on strict
trees instead of DAGs and support causal ordering rather than serializability. The Transactor
model [Field and Varela 2005], uses explicit primitives for checkpointing and rollback to reason
about composition under failures. Its performance has not been investigated.

Ownership and race conditions. Ownership and related properties have been used to avoid race
conditions in shared memory. E.g., Haller and Odersky [Haller and Odersky 2010], Clebsch et
al. [Clebsch et al. 2015], and Castegren et al. [Castegren and Wrigstad 2016] use capabilities to
avoid race conditions in concurrent executions. Haller and Odersky [Haller and Odersky 2010]
propose a type system for Scala, with annotations to denote capabilities of variables. Clebsch et
al. [Clebsch et al. 2015] use capabilities to deny certain operations on variables. (More recently,
Orca aligned these capabilities with memory reclamation [Clebsch et al. 2017].) Those type systems
only allow concurrent access to variables with uniqueness capability to avoid race conditions.
Castegren et al. [Castegren and Wrigstad 2016] only allow particular operations on variables with
certain capabilities; concurrent accesses to shared resources must be wrapped in explicit locking
instructions. These works focus on deadlock freedom and race condition avoidance yet none
provides serializability across multi-actor interactions, as AEON, even less in networked settings.

Varela and Agha [Varela and Agha 1999] hierarchically group actors into casts, each coordinated
by a director actor, which itself may belong to another cast. However, unlike in AEON, an actor can
only have a single director, and ownership transfer is prohibited. Performance implications are not
considered. SafeJava [Boyapati 2003] statically prevents data races and deadlocks by partitioning
locks into a fixed number of lock levels manually. Threads take locks according to a specified partial
order. SafeJava limits flexibility (static lock partition) and parallel execution (threads must keep
locks in order) w.r.t. AEON. Moreover, implementing locks at distributed scale is challenging.

Distributed transactions. Distributed transactional memory (DTM) [Kotselidis et al. 2008] allows
programmers to build distributed applications with serializability. We were unable to find any
DTM openly available for a performance comparison. Several seminal works use transactions
to implement some form of strong consistency for actors, e.g., Chocola [Swalens et al. 2018],
Domains [Koster et al. 2015], however focusing on single processes. Using transactional stores for
consistency-sensitive shared state is an alternative, explored in ğ 6 via Infinispan [Infinispan 2020]
and HyperDex Warp [Escriva et al. 2015], showing favorable results for our approach.

8 CONCLUSIONS

This paper has presented a variant of the actor model, implemented in our AEON language,
specialized for networked distributed setupswhere actors commonly communicate over the network.
Our model (a) enforces serializability and deadlock freedom for multi-actor interaction, while (b)
enabling a high degree of parallelism. This sweet spot is achieved by using strongly decentralized
synchronization for server-side applications following a DAG-based structure of actors. We have
empirically demonstrated the scalability of our model and presented its usability of through case
studies of wide-ranging applications. We are investigating ways to bypass synchronization in
components using only yield references to extend the application scope of AEON, and several
relaxations and extensions, e.g., for (safely) passing objects by reference between collocated actors.

ACKNOWLEDGMENTS

We thank the reviewers for their invaluable feedback. This work was supported by NSF grant
#1618923, ERC grant #617805, DFG center #1053, SNSF grant #192121, and AWS Credits in Research.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

198:28 B. Sang, P. Eugster, G. Petri, S. Ravi, and P.-L. Roman

REFERENCES

2020. Akka.NET. http://getakka.net

AEON. 2020. AEON. https://aeonproject.github.io/aeon/aeon_webpages/

Gul Agha. 1990. Concurrent Object-Oriented Programming. Commun. ACM 33, 9 (1990), 125ś141.

Marcos Kawazoe Aguilera, Wojciech M. Golab, and Mehul A. Shah. 2008. A Practical Scalable Distributed B-Tree. PVLDB 1,

1 (2008), 598ś609.

Apache. 2020. Hadoop. http://hadoop.apache.org/

Dominik Aumayr, Stefan Marr, Elisa Gonzalez Boix, and Hanspeter Mössenböck. 2019. Asynchronous Snapshots of Actor

Systems for Latency-sensitive Applications. In Proceedings of the 16th ACM SIGPLAN International Conference on Managed

Programming Languages and Runtimes, MPLR’19. 157ś171.

AWS. 2020. AWS. https://aws.amazon.com/

Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency Control and Recovery in Database Systems.

Addison-Wesley.

Sebastian Blessing, Sylvan Clebsch, and Sophia Drossopoulou. 2017. Tree Topologies for Causal Message Delivery. In

Proceedings of the 7th ACM SIGPLAN International Workshop on Programming Based on Actors, Agents, and Decentralized

Control, AGERE!’17. 1ś10.

Chandrasekhar Boyapati. 2003. SafeJava: A Unified Type System for Safe Programming. Ph.D. Dissertation. Massachusetts

Institute of Technology.

Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya, and Jorgen Thelin. 2011. Orleans: Cloud Computing

for Everyone. In ACM Symposium on Cloud Computing, SOCC’11. 16.

Elias Castegren and Tobias Wrigstad. 2016. Reference Capabilities for Concurrency Control. In 30th European Conference on

Object-Oriented Programming, ECOOP’16. 5:1ś5:26.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Michael Burrows, Tushar Chandra,

Andrew Fikes, and Robert E. Gruber. 2008. Bigtable: A Distributed Storage System for Structured Data. ACM Trans.

Comput. Syst. 26, 2 (2008), 4:1ś4:26.

Dominik Charousset, Raphael Hiesgen, and Thomas C. Schmidt. 2016. Revisiting Actor Programming in C++. Computer

Languages, Systems & Structures 45 (April 2016), 105ś131.

Wei-Chiu Chuang, Bo Sang, Sunghwan Yoo, Rui Gu, Milind Kulkarni, and Charles Edwin Killian. 2013. EventWave:

Programming Model and Runtime Support for Tightly-Coupled Elastic Cloud Applications. In ACM Symposium on Cloud

Computing, SOCC ’13. 21:1ś21:16.

Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil. 2015. Deny Capabilities for Safe, Fast Actors.

In Proceedings of the 5th International Workshop on Programming Based on Actors, Agents, and Decentralized Control,

AGERE!’15. 1ś12.

Sylvan Clebsch, Juliana Franco, Sophia Drossopoulou, Albert Mingkun Yang, Tobias Wrigstad, and Jan Vitek. 2017. Orca:

GC and Type System Co-design for Actor Languages. PACMPL 1, OOPSLA (2017), 72:1ś72:28.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. Benchmarking Cloud Serving

Systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC’10. 143ś154.

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM 51, 1

(2008), 107ś113.

Ankush Desai, Vivek Gupta, Ethan K. Jackson, Shaz Qadeer, Sriram K. Rajamani, and Damien Zufferey. 2013. P: Safe Asyn-

chronous Event-driven Programming. InACM SIGPLAN Conference on Programming Language Design and Implementation,

PLDI ’13. 321ś332.

Peter Dinges and Gul Agha. 2012. Scoped Synchronization Constraints for Large Scale Actor Systems. In Coordination

Models and Languages - 14th International Conference, COORDINATION’12. 89ś103.

Carlos H. C. Duarte. 1999. Proof-theoretic Foundations for the Design of Actor Systems. Mathematical. Structures in Comp.

Sci. 9, 3 (1999), 227ś252.

Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. 2010. Non-Blocking Binary Search Trees. In

Proceedings of the 29th Annual ACM Symposium on Principles of Distributed Computing, PODC’10. 131ś140.

Robert Escriva and Emin Gün Sirer. 2016. The Design and Implementation of the Warp Transactional Filesystem. In 13th

USENIX Symposium on Networked Systems Design and Implementation, NSDI’16. 469ś483.

Robert Escriva, Bernard Wong, and Emin Gün Sirer. 2015. Warp: Lightweight Multi-Key Transactions for Key-Value Stores.

CoRR abs/1509.07815 (2015).

John Field and Carlos A. Varela. 2005. Transactors: A Programming Model for Maintaining Globally Consistent Dis-

tributed State in Unreliable Environments. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL’05. 195ś208.

Svend Frùlund. 1996. Coordinating Distributed Objects - An Actor-based Approach to Synchronization. MIT Press.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

http://getakka.net
https://aeonproject.github.io/aeon/aeon_webpages/
http://hadoop.apache.org/
https://aws.amazon.com/

Scalable and Serializable Networked Multi-actor Programming 198:29

Guy Golan-Gueta, Nathan Grasso Bronson, Alex Aiken, G. Ramalingam, Mooly Sagiv, and Eran Yahav. 2011. Automatic

Fine-grain Locking Using Shape Properties. In Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA’11. 225ś242.

Philipp Haller and Martin Odersky. 2009. Scala Actors: Unifying Thread-based and Event-based Programming. Theor.

Comput. Sci. 410, 2-3 (Feb. 2009), 202ś220.

Philipp Haller and Martin Odersky. 2010. Capabilities for Uniqueness and Borrowing. In Proceedings of the 24th European

Conference on Object-oriented Programming, ECOOP’10. 354ś378.

Maurice Herlihy and Ye Sun. 2005. Distributed Transactional Memory for Metric-space Networks. In Proceedings of the 19th

International Conference on Distributed Computing, DISC’05. 324ś338.

Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. A Universal Modular ACTOR Formalism for Artificial Intelligence. In

Proceedings of the 3rd International Joint Conference on Artificial Intelligence, IJCAI’73. 235ś245.

HyperDex Warp. 2020. GyperDex Warp. http://hyperdex.org/

Shams M. Imam and Vivek Sarkar. 2014. Savina - An Actor Benchmark Suite: Enabling Empirical Evaluation of Actor

Libraries. In Proceedings of the 4th International Workshop on Programming Based on Actors Agents & Decentralized Control,

AGERE!’14. 67ś80.

Infinispan. 2020. Infinispan. https://infinispan.org/

Joeri De Koster, Stefan Marr, Theo D’Hondt, and Tom Van Cutsem. 2015. Domains: Safe Sharing Among Actors. Sci. Comput.

Program. 98 (2015), 140ś158.

Christos Kotselidis, Mohammad Ansari, Kim Jarvis, Mikel Luján, Chris C. Kirkham, and Ian Watson. 2008. DiSTM: A

Software Transactional Memory Framework for Clusters. In 2008 International Conference on Parallel Processing, ICPP’08.

51ś58.

IlhamW. Kurnia and Arnd Poetzsch-Heffter. 2012. A Relational Trace Logic for Simple Hierarchical Actor-based Component

Systems. In Proceedings of the 2nd Edition on Programming Systems, Languages and Applications Based on Actors, Agents,

and Decentralized Control Abstractions, AGERE!’12. 47ś58.

Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentralized Structured Storage System. Operating Systems

Review 44, 2 (2010), 35ś40.

Doug Lea. 2005. The java.util.concurrent Synchronizer Framework. Sci. Comput. Program. 58, 3 (2005), 293ś309.

Lightbend. 2020. Akka. https://akka.io/

Microsoft. 2020a. Asynchronous Agents Library. https://docs.microsoft.com/en-us/cpp/parallel/concrt/asynchronous-

agents-library

Microsoft. 2020b. Who is Using Orleans? https://dotnet.github.io/orleans/Community/Who-Is-Using-Orleans.html

Andrew Newell, Gabriel Kliot, Ishai Menache, Aditya Gopalan, Soramichi Akiyama, and Mark Silberstein. 2016. Optimizing

Distributed Actor Systems for Dynamic Interactive Services. In Proceedings of the 11th European Conference on Computer

Systems, EuroSys’16.

Rumyana Neykova and Nobuko Yoshida. 2014. Multiparty Session Actors. In Proceedings of the 16th IFIP WG 6.1 International

Conference on Coordination Models and Languages - Volume 8459. 131ś146.

Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. 1996. The Log-Structured Merge-Tree (LSM-Tree).

Acta Inf. 33, 4 (1996), 351ś385.

Orleans. 2020. Orleans. https://dotnet.github.io/orleans/

Christos H. Papadimitriou. 1979. The Serializability of Concurrent Database Updates. J. ACM 26 (1979), 631ś653. Issue 4.

https://doi.org/10.1145/322154.322158

Arnd Poetzsch-Heffter, Ilham W. Kurnia, and Feller Christoph. 2011. Verification of Actor Systems Needs Specification

Techniques for Strong Causality and Hierarchical Reasoning. In International Conference on Formal Verification of

Object-Oriented Software, FoVeOOS’11. 289ś305.

Red Hat. 2020. JBoss Middleware. https://developers.redhat.com/middleware/

Bo Sang, Gustavo Petri, Masoud Saeida Ardekani, Srivatsan Ravi, and Patrick Eugster. 2016. Programming Scalable Cloud

Services with AEON. In Proceedings of the 17th International Middleware Conference, Middleware’16. 16:1ś16:14.

Bo Sang, Pierre-Louis Roman, Patrick Eugster, Hui Lu, Srivatsan Ravi, and Gustavo Petri. 2020. PLASMA: Programmable

Elasticity for Stateful Cloud Computing Applications. In Proceedings of the 15th European Conference on Computer Systems,

EuroSys’20. 42:1ś42:15.

Alexander J. Summers and Peter Müller. 2016. Actor Services. In Proceedings of the 25th European Symposium on Programming

Languages and Systems - Volume 9632. 699ś726.

Janwillem Swalens, Joeri De Koster, and Wolfgang De Meuter. 2018. Chocola: Integrating Futures, Actors, and Transactions.

In Proceedings of the 8th ACM SIGPLAN International Workshop on Programming Based on Actors, Agents, and Decentralized

Control, AGERE!’18. 33ś43.

Piazza Technologies. 2016. Piazza. https://piazza.com

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

http://hyperdex.org/
https://infinispan.org/
https://akka.io/
https://docs.microsoft.com/en-us/cpp/parallel/concrt/asynchronous-agents-library
https://docs.microsoft.com/en-us/cpp/parallel/concrt/asynchronous-agents-library
https://dotnet.github.io/orleans/Community/Who-Is-Using-Orleans.html
https://dotnet.github.io/orleans/
https://doi.org/10.1145/322154.322158
https://developers.redhat.com/middleware/
https://piazza.com

198:30 B. Sang, P. Eugster, G. Petri, S. Ravi, and P.-L. Roman

Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden. 2013. Speedy Transactions in Multicore

In-memory Databases. In ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13. 18ś32.

Carlos A. Varela and Gul Agha. 1999. A Hierarchical Model for Coordination of Concurrent Activities. In Proceedings of the

Third International Conference on Coordination Languages and Models, COORDINATION’99. 166ś182.

Wikipedia. 2020. DDR3 SDRAM. https://en.wikipedia.org/wiki/DDR3_SDRAM

Xingbo Wu, Li Zhang, Yandong Wang, Yufei Ren, Michel Hack, and Song Jiang. 2016. zExpander: A Key-Value Cache With

Both High Performance and Fewer Misses. In Proceedings of the Eleventh European Conference on Computer Systems,

EuroSys’16. 14:1ś14:15.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 198. Publication date: November 2020.

https://en.wikipedia.org/wiki/DDR3_SDRAM

	Abstract
	1 INTRODUCTION
	2 A PRIMER
	2.1 Goals and Bird's-Eye View
	2.2 Scenario
	2.3 Actors
	2.4 Events

	3 PROGRAMMING MODEL
	3.1 Execution Model Overview and Core Principles
	3.2 Actors and Objects
	3.3 References and Ownership
	3.4 Actor Methods and Events
	3.5 Designing AEON Programs

	4 MULTI-ACTOR SYNCHRONIZATION
	4.1 Overview and Basic Definitions
	4.2 Synchronization under Static Ownership
	4.3 Synchronization under Dynamic Ownership

	5 IMPLEMENTATION AND APPLICATION
	5.1 Prototype
	5.2 Optimizations on Remote Communication
	5.3 Fault Tolerance (FT)
	5.4 Application Study

	6 EVALUATION
	6.1 Synopsis
	6.2 RQ1: Two-Phase Locking in C++
	6.3 RQ2: Manual Synchronization on Binary Trees in Akka and C++
	6.4 RQ3: Metadata Store with HyperDex Warp
	6.5 RQ3 and RQ4: Game App with Infinispan and Orleans
	6.6 RQ5: Game App Scalability
	6.7 RQ5: B Tree
	6.8 RQ5: DAG Structure Impact with Piazza
	6.9 RQ6: FT Overhead

	7 RELATED WORK
	8 CONCLUSIONS
	Acknowledgments
	References

