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Abstract
Software-defined wide area networking (SD-WAN) enables
dynamic network policy control over a large distributed net-
work via network updates. To be practical, network updates
must be both consistent, i.e., free of transient errors caused by
updates to multiple switches, and secure, i.e., free of errors
caused by faulty or malicious members of the control plane.
Besides, these properties must incur minimal overhead to
controllers and switches.

We present Cicero: a ConsIstent seCurE pRactical cOn-
troller for SD-WAN updates. Consistency is provided through
a novel update scheduler in conjunction with a distributed
transactional protocol while security is preserved by repli-
cating the control plane and authenticating updates with an
adaptive threshold cryptographic scheme. We ensure practi-
cality by providing a mechanism for scalability through the
definition of independent network domains and exploiting par-
allelism of network updates both within and across domains.
Extensive experiments show Cicero imposes minimal switch
burden and scales to large networks running multiple network
applications all requiring concurrent network updates impos-
ing at worst a 16% overhead on short-lived flow completion
and negligible overhead on anticipated normal workloads.
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1 Introduction
The advent of software-defined wide area networking (SD-
WAN) has brought the concurrent network update problem [1]
to the forefront. In short, the challenge is to construct a control
plane for SD-WAN capable of covering large geographically
separated networks. Building a single consolidated control
plane across WANs agnostic of the different underlying do-
mains (e.g., constituting autonomous systems or based on
some locality in the physical topology) can optimize the pro-
cessing of consistent updates [2–5]. Yet, it is likely ineffective
and hardly scalable in practice, besides requiring strong trust
between the domains. Inversely, managing domains indepen-
dently, each with a separate control plane, can help perform
updates efficiently in parallel (e.g., when updates only affect
single domains), and can ensure that failures (e.g., miscon-
figurations, crashes, malicious tampering) in one domain do
not affect others. However, this does not provide support for
updates affecting multiple domains in a consistent manner.
Requirements. A viable SD-WAN control plane should rec-
oncile the following three conflicting requirements:
Consistency: Concurrent updates — whether affecting indi-

vidual domains (intra-domain routes) or multiple domains
(inter-domain routes) — should meet the sequential speci-
fication of the shared network application, i.e., they should
not create inconsistencies leading to network loops, link
congestion, or packet drops.

Security: The control plane should be able to perform up-
dates in the face of high rates of failures including benign
failures (e.g., crashes) as well as malicious failures (e.g.,
tampering); in particular failures should not spread from
one domain to another.

Practicality: Performance should allow for real-life deploy-
ments that scale to as many domains and switches as possi-
ble while sustaining high update rates, and should impose
minimal overhead on switches.

State of the art. Making the control plane tolerate failures
has been tackled by several approaches, yet these approaches

1

https://doi.org/10.1145/3423211.3425694
https://doi.org/10.1145/3423211.3425694


Middleware ’20, December 7–11, 2020, Delft, Netherlands J. Lembke, S. Ravi, P.-L. Roman, and P. Eugster

either solely handle crash failures [6–8], or handle potentially
malicious behaviors [9, 10] but with no control plane authen-
tication for the data plane, thus not fully shielding the data
plane against masquerading malicious controllers. In addition,
most of these approaches consider only single-domain setups.

Protocols for Byzantine fault tolerance (BFT) [11], a fail-
ure model subsuming crash failures, provide safety and live-
ness guarantees [12, 13] up to a given threshold of faulty
participants, most often growing linearly with regards to the
number of participants. Most work here similarly considers
single domain setups, putting little emphasis on handling
failures to quickly yet permanently retain trustworthiness
and support cooperation across domains throughout succes-
sive failures. Yet while application-specific solutions exist
for performance-aware routing [14] or optimal scheduling for
network updates [15], we are not aware of any practical sys-
tem providing a generic protocol to securely enforce arbitrary
application network updates across a faulty and asynchronous
distributed network environment. Crucially, from the point
of view of practical adoption, existing work introducing dis-
tributed resiliency techniques to address the network update
problem treat both switches and controllers as equal partici-
pants in the protocol, thus inducing prohibitive overhead on
the switching fabric [10, 16].

Contributions. We present Cicero: a comprehensive protocol
for secure SD-WAN updates that ensures network update con-
sistency amidst a dynamic control plane prone to malicious
or faulty members all while exploiting parallelism in network
updates for practicality with minimal switch instrumentation.
Cicero ensures consistency via a novel update scheduler to
enforce resilient ordering of dependent network updates. Se-
curity is ensured via a Byzantine fault-tolerant consensus
protocol with an adaptable threshold-based authentication of
updates leveraging distributed key generation [17]. To deal
with controller (crash or maliciously perpetrated) failure, Ci-
cero supports dynamic membership within the control plane,
allowing controllers to join a live control plane to replace
and offset faulty controllers. A varying membership size for
the control plane, however, calls for a live adaptation of the
threshold used in update authentication as well as a distributed
method for encryption key sharing. In addition, we propose
an alteration to Cicero that slightly sacrifices network update
setup time to reduce the computation load on switches.

Evaluations show that our Cicero implementation, built off
the Ryu controller framework [18] and compatible with any
controller application, performs with nominal overhead in
data center-sized topologies and improves performance when
expanded to large network configurations, e.g., multiple data
centers. Furthermore, our Cicero implementation is extensible
to allow the use of any update scheduler (e.g., Contra [14],
Dionysis [15]) whose update policies can be specified in Ryu.

Roadmap. § 2 presents motivating examples for secure and
consistent network updates and discusses the need for a com-
prehensive solution. § 3 presents the components of Cicero.
§ 4 presents the Cicero protocol that puts the components to-
gether. § 5 describes our Cicero implementation. § 6 presents
performance evaluation of Cicero in a multi-data center de-
ployment. § 7 presents conclusions and future work. Due to
space constraints, details on precise pseudocode for the algo-
rithms, consistency proof are available in an extended report,
alongside evaluation code [19].

2 Background
From a high level, network traffic is shaped by policies set
by network administrators. Based on an unbounded number
of motivating factors (e.g., demand for network resources,
application bandwidth requirements, firewall rules, other net-
work tenant requirements), it is impossible to be 100% certain
what drives network policies. For a network switch in a data
plane, policies are represented by forwarding rules that de-
scribe the store and forward behavior of network packets. An
individual switch has no understanding of a policy or how
it affects the entire network. In an SD-WAN environment, a
control plane of one or more controllers enforces policies set
by the network administrator by translating policies into flow
table entries installed on switches. As network traffic arrives
or as network policies change, updates to switch flow tables
are needed through network updates. Furthermore, the topol-
ogy of the network may be dynamic as physical cabling is
changed and/or failures happen in switch or fabric hardware.
These topology changes may also result in network updates.

2.1 Definitions
A network flow is an active transfer of packets in the data plane
identified by its source, target, and bandwidth requirements.
A route indicates the specific path that a network flow takes
within the network; multiple possible routes may exist for a
network flow. Forwarding rules instruct a data plane switch
how to forward received packets in a flow. The data plane
state consists of all forwarding rules currently in use by all
data plane switches. The control plane is thus responsible
for maintaining forwarding rules in the data plane state for
all routes such that they comply with network policies at all
times, even during a change to the data plane state.

2.2 Challenges
In this section we outline several motivating examples that
show not only the need for consistent network updates per-
formed in a secure manner, but also the need for practicality
for policy specification and scalability for deployment in large
networks facing a myriad of concurrent network updates.

Consistency. Asynchrony in network updates can cause tran-
sient side effects that can significantly affect switch resources
such as overall network availability and/or violation of es-
tablished network policies. Since data plane switches do not
coordinate themselves to ensure update consistency, updates
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Table 1. Examples of network changes with their desired behaviors, potential problems, and consistency preconditions.

Example Network change Desired behavior Potential problems Update consistency preconditions

Fig. 1 Firewall rule changes Policy enforcement Compromize or loss of data Awareness of existing firewall rules

Fig. 2 Network hardware maintenance Loop/black hole freedom Packet loss Awareness of existing flows

Fig. 3 Bandwidth load balancing Loop/black hole freedom
Congestion freedom

Over-provisioning of link
resources

Awareness of existing bandwidth usage
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s3

s1 s3

(a) s1 s2

s4 s5
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s1 s3

(b) s1 s2
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(c)

Figure 1. (a) The state of the flows from 𝑠1 and 𝑠2 to 𝑠5 (b)
is intended to be modified by an update which respects the
firewall rule, (c) but 𝑠1 applies the update before 𝑠2 which
breaks the firewall rule.
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Figure 2. (a) The state of the flows to 𝑠5 (b) is planned to
be modified by an update to bypass the failure of the 𝑠4-𝑠5
link but (c) 𝑠3 applies the update before 𝑠2 which creates an
unintended network loop.
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Figure 3. (a) The state of the flows to 𝑠5 (b) is planned to
be modified by an update alleviating 𝑠3, (c) but the update
is applied by 𝑠1 before it is applied by 𝑠2 which causes an
unintended over-provisioning of the 𝑠4-𝑠5 link.

sent to switches in parallel may be applied in any order. While
the OpenFlow message layer, arguably the most widely used
southbound API for network updates, has proposed bundled
updates [20] to provide transaction style updates to switches,
it only supports these updates for a single switch. It does
not address inconsistencies that can occur due to updates
that span multiple switches. Additionally, OpenFlow sched-
uled bundles require synchronized clocks among switches to
enforce the time at which bundles are applied but even the
slightest clock skew may provoke transient network behavior.

Tab. 1 summarizes several circumstances as well as po-
tential problems that can arise if update consistency is not

provided. For each example, certain preconditions may also
be needed by the controller for ensuring update consistency.
For instance, even a simple network policy change may have
unintended consequences when network updates are not con-
sistent (cf. Fig. 1). The process of changing data plane state
must also be free of transient effects caused by updates to
multiple data plane switches: loop and black hole freedom
ensures no network loops or unintended drops of network
packets (cf. Fig. 2), and congestion freedom ensures no over-
provisioning of bandwidth to network links (cf. Fig. 3).

Security. When considering a control plane prone to faulty
controllers, enforcing a consistent ordering of network up-
dates is not sufficient, those updates must only be applied
when received from correct controllers.

A faulty or malicious controller may corrupt or cause loss
of network data, violate firewall rules, or even leak network
data to a malicious party. While solutions for secure con-
trollers have been proposed, they either focus on resiliency
(e.g., intrusion detection, intrusion prevention) for a singleton
controller [21, 22] or provide resiliency only in the presence
of crash failures [6–8, 23]. Single controller solutions, proven
to be single points of failures [24–28], must be avoided.

Many of the existing limitations when considering a faulty
control plane arise from shortcomings in the southbound
API itself. While OpenFlow enables endpoint authentication
through TLS, it assumes correct behavior of the authenticated
control plane. However, an authenticated controller that is
faulty or compromised is still able to affect network flows in
the data plane. For example, Openflow provides a mechanism
for the control plane to inject arbitrary packets into the data
plane (PACKET_OUT [29]). This mechanism alone is enough
for a malicious controller to easily launch a denial of service
attack against the data plane or to corrupt existing flows [30].
Besides, a malicious controller masquerading as a switch can
report incorrect link and switch state to the control plane [31].
A comprehensive solution for security in network updates
must be able to tolerate arbitrary controller fault.

Practicality. The usefulness of a system is often evaluated on
factors such as ease of use, performance, and efficiency.

Network policy specification must not only be straight-
forward, but also flexible enough to allow arbitrary network
policies. Several solutions for policy specification have been
proposed [32–34], but are either control plane implementa-
tion specific, or provide no mechanism for ensuring update
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consistency or security. A practical system must allow a net-
work administrator the flexibility to use any solution desired
while ensuring consistency and security.

Furthermore, a system for managing changes to the data
plane state must scale to a wide network infrastructure con-
sisting of multiple data centers with potentially thousands
of switches [35, 36]. Existing work [15] shows that apply-
ing updates on commodity switches can require seconds to
complete. For data center workloads where flows start and
complete in under a second [37], applying updates quickly
is vital to guarantee adequate network response time when
changing data plane state. However, responsiveness becomes
even harder to ensure if updates are to be applied in a con-
sistent manner. In a naïve approach enforcing consistency,
updates would be applied sequentially (e.g., by updating 𝑠2,
𝑠1, 𝑠3, 𝑠4 in that order in Fig. 1), increasing response time.
Yet, updates that do not depend on any others, (i.e., causally
concurrent updates) may be applied in parallel (e.g., updates
to 𝑠3 and 𝑠4 in Fig. 1). Identifying causally concurrent updates
to apply in parallel and improve response times is a challenge.

Finally, the data plane’s runtime load for updates must be
low to ensure as many resources as possible are used for the
network’s core purpose; the transmission of network data.

2.3 Related Work
While the following solutions present methods for solving sig-
nificant problems that arise in SD-WAN deployments, none
however provide the desirable guarantees of consistent net-
work updates in the midst of controller faults while remaining
practical. Tab. 2 highlights the shortcomings of these solutions
that make them impractical in a realistic deployment.

Consistency. Additionally, there have been several works pub-
lished in the realm of consistent network updates. McClurg
et al. [45] proposed network event structures (NES) to model
constraints on network updates. Jin et al. [15] propose Diony-
sus, a method for consistent updates using dependence graphs
with a performance optimization through dynamic scheduling.
Nguyen et al. [47] propose ez-Segway, a method providing
consistent network updates though decentralization, pushing
certain functionalities away from the centralized controller
and into the switches themselves. Černỳ et al. [46] show that
in some situations it may not be possible to ensure consistent
network updates in all cases. As such, it may be desirable to
wait until the packets for a particular flow are “drained” from
the network prior to applying switch updates. They define
this behavior as packet-waits and provide an at-worst polyno-
mial runtime called optimal order updates which provides a
mechanism for detecting such situations.

Fault tolerance. The area of fault-tolerant network updates
has been explored in many facets. ONOS [6] and ONIX [7]
provide a redundant control plane through a distributed data
store, however their primary focus is on tolerance of crash
failures. Botelho et al. [43] also make use of a replicated data
store, following a crash-recovery model, for maintaining a

consistent network state among a replicated control plane
built upon Floodlight [48]. Ravana [8], another protocol that
only tolerates crashes, differs slightly in its use of a distributed
event queue rather than a distributed data store. While Botelho
et al. and Ravana ensure event ordering and prevent duplicate
processing of events, they do not provide a mechanism for
authenticating updates sent to the data plane. RoSCo [44]
makes use of a BFT protocol to ensure event-linearizability,
but does not support a dynamic control plane and requires
extensive key management for controller authentication.

Li et al. [9] proposed a method of a BFT control plane
by assigning switches to multiple controllers that participate
in BFT agreement. However, this work focuses significantly
on the problem of “controller assignment in fault-tolerant
SDN (CAFTS)" with little discussion on how BFT is used to
ensure protection from faults. MORPH [10] expands the solu-
tion of CAFTS with a dynamic reassigner which allows for
changes to the switch/controller assignment. Neither method
fully protects against malicious updates sent to the data plane;
assuming that controllers participate in some BFT protocol
for state machine replication is not enough to ensure the se-
curity of such updates. Without control plane authentication,
a malicious controller can make arbitrary updates to a data
plane switch. While it may seem trivial to add TLS for Open-
Flow [49], this requires additional complexities inherent in
the protocol. TLS uses certificates to authenticate participants
and encryption to ensure confidentiality of data, but does
not protect against a faulty controller. Besides, as distributed
control plane membership changes, individual controller and
switch certificates must be redistributed to all participants.

3 Cicero Components
In this section, we detail the various mechanisms Cicero em-
ploys to ensure both consistency and security while being
efficient enough for practical deployment in a production data
center. § 3.1 describes how Cicero handles consistency in a
modular manner within a local network by using an update
scheduler; § 3.2 describes how update security is enforced in
a dynamic control plane through event authentication, con-
troller agreement, quorum update authentication, and unique
key adaptation; finally, § 3.3 describes facilities that Cicero
exploits to improve the performance of network updates in
both local and wide area networks through intra- and inter-
domain update parallelism, and signature aggregation.
3.1 System Model and Consistent Network Updates
The data plane is a set of switches connected by links en-
compassing multiple domains of operation. The control plane
consists of a dynamic set of distributed controllers. A change
in data plane state requires a set of network updates {𝑢𝑖 =

(𝑠 𝑗 , 𝑟𝑘 )} where (𝑠 𝑗 , 𝑟𝑘 ) indicates rule 𝑟𝑘 being applied to switch
𝑠 𝑗 . An update scheduler determines a schedule by denoting
dependencies between updates. Let an update dependence
be represented by a tuple (𝑢, 𝐷) where 𝑢 is the update to
be applied (consisting of (𝑠, 𝑟 )), and 𝐷 is the set of updates
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Table 2. Comparison of network management solutions for fault tolerance and consistency along with their deficiencies.

System/approach Crash
tolerant

Byzantine
tolerant

Controller
authentication

Dynamic
membership

Update
consistent

Update
domains Implementation

Singleton controller Common [18, 38–40]
Singleton controller w/ TLS ✓ Common [18, 38–40]
ONOS [6] ✓ ✓ Deployed in practice [41, 42]
Ravana [8] ✓ Experimental extension of Ryu
Botelho et al. [43] ✓ Experimental
MORPH [10] ✓ ✓ ✓ Experimental
RoSCo [44] ✓ ✓ ✓ ✓ Experimental extension of Ryu
NES [45] ✓ Theoretical specification
Dionysus [15] ✓ Experimental
Optimal Order Updates [46] ✓ Theoretical specification
ez-Segway [47] ✓ Experimental extension of Ryu
Cicero (this work) ✓ ✓ ✓ ✓ ✓ ✓ Experimental extension of Ryu

Figure 4. The update scheduler determines that there are no
dependencies between the updates for the green (dashed) set
of switches and the updates for the red (dotted) set.

that must be applied before 𝑢. For all updates 𝑢𝑖 , the update
scheduler must determine the set of all update dependencies.

Fig. 1 depicts an example which requires a set of updates
for switches 𝑠1, 𝑠2, 𝑠3, and 𝑠4. To ensure update consistency,
an update scheduler would require the update at 𝑠2 to be
completed first and, once that update has been applied, the re-
maining updates can be performed in any order. This is further
depicted in Fig. 4 where a network update requires modifica-
tions to the switches highlighted with green dashes and red
dots. While the updates within these two sets of switches may
require ordering, modifications across sets involve a disjoint
set of switches and can be performed in any order.

The area of update schedulers has been extensively dis-
cussed [15, 46, 50, 51]. Our goal is to provide a practical
construction and protocol for consistent and secure network
updates. As such, we assume the existence of a basic update
scheduler implemented using any of these approaches. We
discuss in § 3.3 how Cicero exploits that update scheduler
to perform updates to switches in parallel while still preserv-
ing consistency, i.e., enforce the specification of the update
schedulers even assuming malicious or faulty controllers con-
currently invoking network updates.

3.2 Security
At its core, secure network updates require switches to apply
updates only from a trusted controller. While a message from
a controller can be easily validated using message signatures,
trust in a single controller is not enough when considering
malicious faults (e.g., a compromised controller can easily

sign malicious messages with a valid signature). Cicero in-
creases trust in the control plane by requiring the agreement
of a quorum majority from multiple controllers on the set of
updates. In essence, we employ a dynamic distributed control
plane with controllers co-signing network updates.
Event generation – event authentication. A change in data
plane state is assumed to be invoked as the direct result of
some event, be it the result of a switch detecting an unroutable
packet (e.g., mismatch in flow table rules), a change in net-
work policy, a failure of network hardware, or some other
factor. Events received by the control plane require validation
to ensure that they originated from a reliable source. To this
end, Cicero makes use of a public key infrastructure (PKI)
system. Each event source is assigned a public/private key
pair. When an event is generated, the originator signs the event
with their private key. This ensures that events are only gener-
ated by known sources avoiding the case where controllers
process events from untrusted entities in the network.
Event broadcast – controller agreement. A controller, upon
receiving an event, broadcasts the event to all other controllers
through an established agreement protocol. Next, a controller,
upon receiving an event from another controller, indepen-
dently responds to the event with network update(s). A switch
only applies an update if it has been received from a quo-
rum of trusted controllers. We make use of an atomic broad-
cast [52] (i.e., consensus) to ensure each controller has a
consistent view of the data plane state. Controllers use a PKI
system to validate messages sent with the atomic broadcast.
Threshold signatures – quorum update authentication. Each
controller signs the updates they emit so switches can ver-
ify the origin of the updates they receive. The strawman ap-
proach consists of controllers being assigned different pairs of
public/private keys for signing updates. Switches only apply
updates with valid signatures (i.e., from controllers) that are
emitted from a quorum of verified controllers. However, man-
aging all the public keys on all the switches rapidly becomes
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cumbersome as controllers may be added to and/or removed
from the control plane. Moreover, the limited physical re-
sources of switches must be preserved (cf. § 3.3)

To this end, we employ a system based on threshold cryp-
tography [53, 54]. In a (𝑡, 𝑛)-threshold signature scheme, a
single public/private key pair is generated for the entire con-
trol plane. The public key is distributed to each switch, while
each controller obtains a share of the associated private key
used for signing updates thanks to Shamir secret sharing [55].
To verify an update, the signature shares received from each
controller are combined with an aggregation function to create
a signature that is verified against the single public key. The
aggregated signature can only be verified if correctly signed
by at least 𝑡 out of 𝑛 controllers, thus any 𝑡 − 1 controllers,
with the exception of negligible probability, can never on their
own construct a signature that can be verified against the pub-
lic key for the entire control plane. We set 𝑡 to the controller
quorum size necessary to apply an update, i.e., 𝑡 = ⌊𝑛−13 ⌋ + 1.

We note that to tolerate a single failure, there must be at
least 4 members in the control plane (i.e., ⌊𝑛−13 ⌋ ≥ 1). Thus,
we assume Cicero never runs on control planes with 𝑛 < 4.

Distributed key generation – unique key adaptation. Using
threshold cryptography and secret sharing for update valida-
tion establishes a method for secure updates in a dynamic
distributed control plane. However, distribution of private key
shares when controller group membership changes creates
a significant complication: no single controller should ever
have knowledge of a private key share other than its own.
Verifiable secret sharing (VSS) [56] is a method in which a
designated dealer distributes shares of a secret to all partic-
ipating members. VSS differs from standard secret sharing
in that clients can construct a valid share even if the dealer
is malicious. These shares can be used in a (𝑡, 𝑛)-threshold
signature scheme to create message signatures that are only
validated if at least 𝑡 members correctly sign the message
with their shared secret. Naïvely, one could employ such a
system to distribute private key shares to controllers when the
control plane membership changes. However, requiring the
setup and maintenance of such a system is impractical as the
VSS dealer is a single point of failure for confidentiality.

We instead employ a system based on distributed key gen-
eration (DKG) [57] that expands on the concept of VSS to an
environment where there is no trusted dealer. In short, each
controller acts as a sub-dealer, creating and distributing pri-
vate key sub-shares to each other controller. The sub-shares
are then aggregated to create the private key share for the
controller. DKG uses homomorphic commitments to ensure
that the corresponding public key for the group is known by
all controllers, but except for negligible probability, no one
controller can create a signature that is successfully validated
by the public key. Once generated, this public key must be
shared to all switches. Future instances of DKG ensure that

Control 
Plane

Data
Plane

Domain BDomain A
s1

s2
s3 s4

A s1, s2

B s3, s4

A s1, s2

B s3, s4

Figure 5. Depiction of a two domain network where an event
generated by switch 𝑠1 and sent to its local domain control
plane. The control plane then uses global domain policies to
determine that network updates involve both domains 𝐴 and
𝐵. The control plane of 𝐴 forwards the event to 𝐵 and both
domains update their local switches to set flow tables rules.

new shares can be generated for the control plane as group
membership changes without changing the public key.

3.3 Practicality
Amidst consistency and security, for a solution to be feasible
in a real data center deployment it must also be practical.
Cicero provides an effective solution by exploiting intra- and
inter-domain update parallelism, and enabling efficient signa-
ture aggregation to alleviate switches runtimes.

Update parallelism – intra-domain parallelism. Using an up-
date scheduler (cf. § 3.1) allows Cicero to exploit parallelism
in network updates. Given a set of network updates and their
corresponding update dependencies determined by the update
scheduler, two updates 𝑢𝑖 and 𝑢 𝑗 can be applied in parallel if
their dependencies 𝐷𝑖 and 𝐷 𝑗 are disjoint, i.e., 𝐷𝑖 ∩ 𝐷 𝑗 = ∅.

Update domains – inter-domain parallelism. Cicero employs
an atomic broadcast (cf. § 3.2) to ensure a consistent ordering
of events processed by the control plane. The responsiveness
of such agreement protocols unfortunately greatly deterio-
rates as the size of the control plane increases, hence creating
a trade-off between fault tolerance and performance. Addi-
tionally, in large networks such as a collection of data centers,
this responsiveness is further impacted by having a geograph-
ically dispersed control plane. This distribution is initially set
to minimize latency between local control and data planes, but
ultimately increases latency within the global control plane.

As such, Cicero allows the division of network resources
into domains, each as its own separate instance of the protocol
functioning on disjoint control and data planes, e.g., separate
IP subnetworks. Domains may rely on separate update sched-
ulers, agreement communication groups and control plane
public keys. The goal of this division is to enable data plane
events that involve updates to switches fully contained within
the same domain to be processed independently, i.e., in paral-
lel, of other such events in other domains. Events that require
updates spanning multiple domains must however be handled
in a consistent manner by the control plane as a whole.

Cicero avoids the need for inter-domain agreement through
assumptions on setup and global domain policies. First, we
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assume operators of different domains trust each other, e.g.,
domains are sub-domains of the same institution. This domain
isolation thus offers the security that a, potentially faulty,
domain’s control plane cannot update another domain’s data
plane, but it may affect flows with a remote origin crossing the
data plane it is responsible for. Second, we assume the global
domain policies are static. As such, each domain’s control
plane is able to determine which domains require updates
based on a received event. A controller receiving an event
that involves updates to multiple domains merely forwards
the event to the control plane of each affected domain.

For example, consider the flow outlined in Fig. 5 where an
event generated by switch 𝑠1 in domain 𝐴 needs a route to
𝑠4 to be established. Using the static global domain policies,
the controller in 𝐴 that receives the event determines that it
requires updates to both domain 𝐴 and 𝐵, and forwards the
event to the control plane of domain 𝐵. Both domains process
the event in parallel and update the switches within their
domain accordingly, setting the flow table rules of switches
to establish a flow from 𝑠1 to 𝑠4.

Update signature aggregation. To verify an update, the sig-
nature shares from each controller must be collected and
aggregated prior to verification against the threshold public
key. Putting this responsibility on switches can put unneces-
sary load on their hardware. As such, Cicero presents two
approaches for signature aggregation: (1) switch aggregation
in which each individual switch is responsible for collecting
and aggregating update signatures, and (2) controller aggrega-
tion in which a single controller is designated the “aggregator”
that collects and aggregates signatures.

Each approach comes with its own trade-offs. While switch
aggregation requires additional resources and instrumentation
on switches for storing and aggregating signatures, controller
aggregation increases latency since switches must wait for the
aggregator to collect and aggregate responses. Furthermore,
controller aggregation must be able to handle detection of a
failed or malicious aggregator. Our evaluation in § 6 further
quantifies the trade-offs of each approach.

4 Cicero Protocol
In this section, we show how the components depicted in § 3
form a protocol with: (1) secure and consistent network up-
dates, (2) signature aggregation, and (3) membership changes.
We further comment on the guarantees of the protocol.

4.1 Secure and Consistent Updates
The Cicero secure and consistent network update protocol
employing atomic broadcast, threshold cryptography, and
acknowledgements is composed of two independent routines:
(1) switch runtime and (2) controller runtime. The controller
runtime can further be broken down into the handling of
events within and across multiple domains.

Switch protocol. Fig. 6 depicts the update processes for a
switch when it receives either a packet from the data plane

(a) Switch forwarding process.

(b) Switch update process.

Figure 6. Flow charts describing the processes of a switch (a)
handling incoming packets on the data plane and (b) handling
updates received from the control plane.

(Fig. 6a) or an update from the control plane (Fig. 6b). Normal
operation for a switch is to use the flow table rules established
for network policies to store and forward packets in the net-
work. Upon receiving a packet that does not match a flow
table rule, a switch generates and signs an event indicating the
mismatch and sends it to all members of its domain control
plane. Any network update received from the control plane
is not immediately applied. The message, containing an up-
date and signature, is stored by the switch until the switch
receives a quorum majority of identical updates from control
plane members. Once enough messages are received, using
the threshold signature aggregation function, the switch aggre-
gates the signatures for the update and verifies the resulting
signature against the public key for the control plane. The
update is then either applied or ignored, depending on the
validity of the signature. Finally, the switch sends a signed
acknowledgement to all members of the domain control plane
to alert them of the network update application.

Controller protocol. Fig. 7 depicts the process for a controller
when it receives an event (Fig. 7a), or when agreement is
reached on the ordering of events (Fig. 7b). Under normal op-
erations controllers for a domain of switches are idle waiting
to receive signed events. Upon receiving an event, the source
of the event is verified and the event is either ignored, if
(1) the event was previously processed or (2) the event source
cannot be verified, or broadcast to all members of the do-
main’s control plane. Using the established network policies
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and the update scheduler, each member of the control plane
independently determines the necessary network updates and
dependency sets in response to the event. Each network up-
date is signed with the controller’s private key share. Network
updates for disjoint dependency sets are processed in par-
allel with network updates having no dependencies being
immediately sent to the corresponding switch(es). As verified
acknowledgements for applied updates are received, these
updates are removed from dependency sets and additional
updates are sent, in parallel, to the switch(es) for empty de-
pendency sets. Since switches are assumed nonfaulty, these
received acknowledgements ensure forward progress in event
processing despite the presence of loops in the protocol flow.

Inter-domain updates. If, thanks to the global domain poli-
cies, a controller determines that an event affects multiple
domains, it forwards the event to a controller in each affected
domain. The receiving controllers broadcast the event to all
other controllers of their respective domain as with any vali-
dated event. To select a valid recipient, each controller main-
tains a set of active controllers in each other domain. This list
is updated every time a controller is added or removed to/from
any other domain’s control plane (cf. § 4.3). Furthermore, to
prevent never-ending dissemination of the event, a forwarded
event is tagged as such to indicate it should not be further
forwarded to other domains and only be processed locally.

4.2 Controller Aggregation
The Cicero protocol outlined in § 4.1 specifically focuses on
switches aggregating signatures. Optionally, controller aggre-
gation may be used in which a controller is assigned to be
the aggregator for both receiving events from switches and
collecting (to aggregate) signed updates. The process for con-
troller aggregation is depicted in Fig. 7c. Switches, instead of
sending events to all controllers in their domain, only send
them to the aggregator. Controllers, instead of sending signed
updates to switches, send them to the designated aggregator.
The aggregator collects signed switch updates, aggregates the
signatures once a quorum has been received, and sends the
update along with the aggregated signature to their respec-
tive switch. A switch receiving aggregated signatures merely
verifies the update’s signature against the public key of the
control plane and either applies or ignores the update.

Aggregator selection. All controllers for a domain maintain
a representation of the control plane communication group
containing each controller’s identifier, public key, and any
information needed for communication (e.g., IP address, port).
As new controllers are added (cf. § 4.3), they are given the
next highest unused identifier. Identifiers are never reused,
even when controllers leave the group. At any given time, the
aggregator can be determined as the controller with the lowest
identifier. Since all controllers in the domain have the same
view of the communication group, this provides stability in
the selection. Once an aggregator is determined, the control
plane members inform switches by sending a signed message.

(a) Controller receive event process.

(b) Controller update process.

(c) Aggregator controller process.

Figure 7. Flow charts for controller’s processes (a) handling
incoming events, (b) handling updates to be sent to the data
plane, and (c) aggregating updates from other controllers.

4.3 Control Plane Membership Changes

The process for a domain’s control plane membership change
is depicted in Fig. 8. Due to the potential change in quorum
size, both add and remove operations require the distribution
of new private key shares. The Cicero protocol ensures that
no events are processed until after the membership change
has completed, which prevents control plane members from
having to keep old and new shares concurrently. A phase
value records the current iteration of membership change.
The phase value is incremented with each controller addition
or removal. Controllers must be added and removed one at
a time ensuring lock-step increment to the phase. Events
broadcast to all domain controllers are tagged with the current
phase. Thanks to atomic broadcast, controllers queue events
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(a) Controller bootstrap process. (b) New controller process.

(c) Controller membership consensus.

Figure 8. Flow charts for controller membership change: (a)
and (b) show the processes for the bootstrap controller and the
joining controller respectively, and (c) shows the controller
process when a membership change consensus is reached.

received during a change in control plane membership and
only broadcast and treat them after the phase has changed.

Add controller. The procedure to add a controller to the con-
trol plane is as follows: (i) public keys for event originators
and existing control plane members are distributed to the
new controller alongside its identifier; (ii) the new controller
is added to the control plane communication group though
consensus proposed by the bootstrap controller; (iii) DKG is
executed to distribute signature shares to the new controller
group reflecting the new quorum size and ensuring that the
threshold public key remains the same; (iv) the data plane
state and both local network policies from the control plane
and global domain policies are sent to the new controller.

Cicero uses a trusted bootstrap controller to manage addi-
tions to the control plane. It is the only control plane member
that can initiate consensus rounds to add new controllers.

The final step requires updating all other domains to in-
dicate the new controller as a valid recipient of forwarded
events. Here, the bootstrap controller generates and signs an
event containing the new controller’s communication infor-
mation and forwards this to a member of each other domain.
Each receiving domain, in parallel, processes the event as
any other network event (e.g., atomically broadcasts the event
to all members of the local domain). However, instead of
sending network updates, a controller handles this event by
updating its view of the sender’s control plane.

Remove controller. The procedure to remove a controller
from the control plane is as follows: (i) the controller is re-
moved from the control plane communication group; (ii) DKG
is executed to distribute signature shares to the controller

(a) Cicero controller runtime. (b) Cicero switch runtime.

Figure 9. Depiction of the Cicero runtime components.

group reflecting the new quorum size and ensuring that the
threshold public key remains the same; (iii) switches are (po-
tentially) assigned a new aggregator.

Removing the controller from the communication group is
performed via a round of consensus proposed by a member
that detects that the member should be removed.

The final step requires updating all other domains to indi-
cate the removed controller is no longer a valid recipient of
forwarded events. As when adding a controller, an event is
sent to a controller of each other domain. The event is in turn
processed in parallel by each domain’s control plane where
each controller updates its view of the sender’s control plane.

We assume the existence of a failure detector [58–60] capa-
ble of accurately detecting the failure of an existing controller.
A controller can also be pro-actively removed merely by ei-
ther simulating a failure (e.g., loss of power) or proposing
its own removal through the consensus protocol. We recog-
nize that it is impossible to ensure 100% accuracy with failure
detection. However, premature removal of detected failed con-
troller only affects liveness of the system. Furthermore the
Cicero protocol allows for re-adding of previously removed
controllers. Through consensus and quorum authentication,
Cicero ensures that it is impossible for network updates to
be applied to the data plane in the event of a faulty controller
being undetected, provided that the number of undetected
faults is at most ⌊𝑛−13 ⌋ for 𝑛 controllers (cf. § 3.2).

4.4 Formal properties
In an extended technical report [19], we present the precise
pseudocode for the Cicero components and prove that the Ci-
cero protocol for network updates provides observational in-
distinguishability [8] and event-linearizability [44]: Cicero’s
execution is indistinguishable from the correct sequential
execution of a single controller enforcing network updates.

5 Cicero Implementation
As Fig. 9 shows, Cicero is implemented as a middleware be-
tween the controller application, containing network policies,
and the data plane switches, storing and forwarding network
traffic based on established flow table rules.
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5.1 Control Plane Components
The controller platform is extended with a Java layer for
Cicero, which processes the received events (e.g., signature
verification, broadcast) and updates sent to the data plane
(e.g., signing with secret share, ordering updates, and han-
dling acknowledgements). Another process in the Java layer
handles signature aggregation to be sent to the data plane
when controller aggregation is used. A controller is made up
of the following nine components:
Controller application. Network policies are set based on the
controller application. While Cicero is designed as a separate
layer to allow for any controller application, our implementa-
tion uses the Ryu [18] runtime and establishes rules for flows
based on shortest path routing.
Global domain policies. Cicero requires global domain poli-
cies for determining network updates for flows that cross
domains. The implementation is specific to the controller ap-
plication. Our implementation uses global policies based on
the shortest path between domains.
Update scheduler. To ensure update consistency, the Cicero
runtime depends on the existence of an update scheduler used
to determine dependencies between network updates. The
update scheduler used for the evaluation assigns dependencies
for network updates based on the reverse of a network flow’s
path. For example, consider a network flow that traverses
three switches (𝑠1 → 𝑠2 → 𝑠3). Establishing this flow requires
updating all of these switches. The update scheduler assigns
dependencies for these updates such that (1) all updates are
applied to 𝑠3 before any updates to 𝑠2 can be applied, and that
(2) all updates are applied to 𝑠2 before any updates to 𝑠1 can
be applied. This ensures downstream rules for the flow are set
before any network data is allowed to traverse the network.
Broadcast library. Cicero utilizes atomic broadcast to distrib-
ute events among the members of the control plane commu-
nication group. The broadcast library strictly follows atomic
broadcast’s specifications and guarantees [52] by using the
routines of the BFT-SMaRt library [13].
Threshold signatures. Data plane switches authenticate up-
dates with threshold signatures that can only be verified when
a quorum of signatures is formed. Our implementation makes
use of BLS signatures [61] implemented in the Pairing Based
Cryptography library [62].
Private key share distribution. The distribution of private
shares for controllers so they can sign switch updates is per-
formed using the DKG library [17].
Southbound interface. We extend the OpenFlow message
protocol to add new message types for signed messages, and
add a unique identifier to each message to prevent duplicate
processing of events and updates.
Signature aggregation. Cicero supports switch and controller
aggregation. For the latter, switches are assigned the aggrega-
tor with OpenFlow “master/slave role request” messages [63].

...

...

Top of 
Rack 

Switches

Edge 
Switches

Uplinks to 
Spine 

Switches

Figure 10. Depiction of a server pod, made up of racks and
two layers of switches atop, in a Facebook data center [67].

Failure detector. We use periodic heartbeat messages to de-
tect failures and use the broadcast library for transport.
5.2 Data Plane Components
The Cicero switch platform is an extension to Open vSwitch
(OVS) to perform signature aggregation and verification of
updates both thanks to threshold public key component. Addi-
tionally, changes are made for switches to either send events
only to the aggregator controller if there is one, or multicast
events to all the members of the control plane. As a further
consistency mechanism, acknowledgments are sent to the
control plane once updates are applied.

As is clear in Fig. 9, the switch runtime is considerably
simpler than the controller runtime. We specifically designed
Cicero to minimize the resource consumption impact on
switches because of their low capabilities.

6 Cicero Evaluation
We here show how the strong guarantees for consistent and
secure updates in Cicero can be achieved with little overhead
in practical networked environments. We further show how
aggregation and multi-domain parallelism reduce that cost.
6.1 Experimental Methodology
We evaluate Cicero against existing update frameworks in
typical business-like environments. As such, we compare
(1) a centralized controller, (2) a crash-only tolerant update
protocol where communication within the control plane is
performed using the atomic broadcast provided by the BFT-
SMaRt library, but with no quorum authentication of signa-
tures on switches, and (3) the Cicero update protocol on a
single-domain setup with and without aggregation on con-
trollers (cf. § 6.2) and on a multi-domain setup (cf. § 6.3).
Setup. We executed the implementation detailed in § 5 on a
network simulated atop compute nodes from the DeterLab test
framework [64, 65] connected via a 1 Gb test network. Nodes
ran Ubuntu 18.04.1 LTS with kernel 4.15.0-43, two Intel®
Xeon® E5-2420 processors at 2.2 GHz, 24 GB of RAM and a
SATA attached 256 GB SSD. Controllers had their own node,
switches and hosts were node-sharing OpenVz [66] instances.
Topology. We simulated the Facebook data center topology [67]
where data centers are divided into server pods (as depicted in
Fig. 10) consisting of 40 racks of compute servers. Each rack
contains a top-of-rack switch connecting all servers in the
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rack. Each top-of-rack switch is connected to 4 edge switches
that provide high speed bandwidth and redundancy between
racks. Edge switches further connect multiple pods to spin
switches (unshown in Fig. 10) linked to the upstream network.

Workloads. We ran Hadoop MapReduce and web server traf-
fic workloads [37] over the given topology and measured their
flow completion times according to the shortest path routing
policy used by the controller application. We evaluated com-
pletion times for 5000 flows using each framework. Flows
follow a Poisson distribution using average packet sizes and
total flow sizes (in kB) for inter-rack, intra-data center, and
inter-data center defined for each workload.

Creating routes. Unless explicitly stated otherwise, rules in
flow tables are reused for multiple flows. Flow tables in
switches initially contain no forwarding rules. As flows enter
the network, events for unroutable packets are generated by
switches and sent to the control plane. Controllers respond
with network updates sent to switches to establish rules for the
flows. As flows complete, these rules remain in switch flow ta-
bles and are reused by later flows matching them. As reported
in [37] for Hadoop workloads 99.8% of traffic originating
from Hadoop nodes is destined for other Hadoop nodes in the
cluster. Reusing rules requires fewer overall events. Switches
do not need to contact the control plane for each new flow.

6.2 Single-domain Evaluation
In the following, we used a single server pod topology with a
control plane made up of 4 controllers that tolerates 1 failure
and results in a quorum size of 3. This evaluated control plane
size is similar to evaluations of related work [8, 43, 44].

Flow completion time. Fig. 11a and Fig. 11b show flow com-
pletion times for the Hadoop and web server workloads, re-
spectively. Setting up a flow takes an average of ≈2.9 ms for
a centralized controller and ≈4.3 ms for a crash fault-tolerant
replicated control plane. Cicero is slower due to the extra
messaging and therefore takes ≈8.3 ms without and ≈11.6 ms
with controller aggregation for flow setup. However, since
flow rules are not removed from switches after they are es-
tablished, they are reused for future arriving flows. Therefore,
after initial flow setup, the overhead of Cicero is negligible.

Unamortized flow creation. To further investigate the over-
head of Cicero, we ran the Hadoop workload using a se-
tup/teardown approach. In this approach, no flow rules for
routes are initially set in the data plane. Each flow is managed
by a pair of events to inform the control plane to set the route
for the flow before it starts, and clear the flow rules for the
route once the flow is completed, hence preventing overhead
amortization. Each event results in appropriate network up-
dates. The setup/teardown approach is applicable in hosted
networks such as those utilizing subscription-based services.

The average flow completion times are depicted in Fig. 11c.
For Hadoop flows, lasting ≈33.6 ms on average, Cicero has
an overhead of 16% with switch aggregation and 29% with

controller aggregation over the centralized approach. Setup
times are constant regardless of overall flow duration. Since
these setup times are the same for all flows, Cicero’s overhead
with these short-lived flows would be shadowed by the total
flow execution time for longer running flows.

Switch resource usage. To reduce switches’ CPU utilization,
update signatures can be aggregated on the control plane at
the cost of increased latency (cf. Fig. 11c). Fig. 11d depicts
OVS CPU utilization on switches for the Hadoop workload.
While Cicero signature verification increases CPU utilization
on switches, controller aggregation halves switch CPU us-
age. While using switch aggregations of signatures results
in higher CPU utlitization, this did not result in an increased
latency in the processing of updates.

6.3 Multi-domain Evaluation
As discussed in § 3.3, Cicero provides a means to logically
divide the data plane into separate network domains each
with its own separate control plane. Events generated within a
domain requiring updates solely to the data plane contained in
the domain, i.e., local events, can be processed independently
of other domains’ local events. As we will show shortly, this
separation can reduce the load on the control plane(s) and
improve scalability. This separation is particularly useful in
the face of large networks that share the same large control
plane for simplicity. We first evaluate the cost of various
control plane size to display the benefit for multiple domains.

Control plane size. While increasing the control plane mem-
bership size allows for more controllers to be faulty, providing
additional robustness, it also results in additional messaging
for broadcasting events as well as an increased latency due to
quorum size, both of which increases the overhead of updates.
To examine this overhead we performed a series of updates
with control plane sizes varying up to 10 members.

The results in Fig. 12a depict the average time to perform a
switch update for an event depending on the size of the control
plane. A control plane size of one represents an unprotected
centralized control plane. As expected, we see a direct relation
between increased control plane size and update time due to
the extra messaging needed for broadcast and verification of
aggregated signatures. The crash-tolerant update approach is
less impacted than Cicero by the growth of the control plane
size since switches do not authenticate updates; the additional
overhead is merely due to extra messaging.

With Cicero, the overhead for a single switch update can
be significant for a large control plane, e.g., 2.5× that of a
centralized approach when using 10 controllers to support
3 failures. However, in a data center environment, such a
large control plane might be excessive as failures are typically
short-lived and failed controllers are quickly replaced with
new correct ones. For instance, tolerating 2 concurrent failures
is enough to achieve five nines (99.999%) of up-time [68].
Further, splitting the network into disjoint domains may help
reduce overhead inherent to a growing control plane.
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(a) Hadoop flow completion.
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(b) Web server flow completion.
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(c) Hadoop flow completion unamortiz.

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30

O
V

S
 C

P
U

 U
ti

li
za

ti
on

Workload Duration (s)

Centralized
Crash Tolerant

Cicero
Cicero Agg

(d) Switch CPU utilization.

Figure 11. Cicero performance on a single-domain network comparing a centralized solution to a control plane, made of 4
controller replicas, that uses either a crash-tolerant update protocol, Cicero without/with controller aggregation. (a) and (b) depict
the CDF of Hadoop and web server flow completion times, respectively. (c) depicts the CDF of Hadoop flow completion times
when routes are removed upon flow completion. (d) depicts the (switch) CPU utilization of OVS during a Hadoop workload.
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(a) Network update time in one domain
depending on the control plan size.
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(b) Events handled per control plane
with multiple domains (MD) in a pod.
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(c) Hadoop flow completion with mul-
tiple pods/domains (MD).
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(d) Web server flow completion with
multiple data centers/domains (MD).

Figure 12. Cicero performance for multi-domain networks. (a) depicts the average time to apply switch rules in a domain for a
varying sized control plane. (b) depicts the comparison of events processed by each controller in a pod configured as single vs
multi-domain. (c) depicts the CDF of Hadoop flow completion times for both single and multiple domains. The single domain is
made of 12 controller replicas while the multi-domain consists of 3 domains each with 4 controller replicas (i.e., 12 controllers
in total). (d) depicts the CDF of web server flow completion times for a larger multi-data centers topology.

Event locality. We next investigated how increasing the num-
ber of domains within a single pod affects events processing.
Due to the locality of flows as reported by Facebook [37],
only 5.8% of the Hadoop workload and 31.6% of the web
server workload required processing by multiple domains.

Fig. 12b shows the percentage of total events (for the whole
data center) that must be processed by each control plane. For
a single network domain, all events must naturally be pro-
cessed by the single control plane. As the number of domains
increases, the number of events processed by each domain’s
control plane is greatly reduced, however with diminishing re-
turns. While this evaluation shows the gains achievable using
multiple domains for one pod, it is more practical to increase
the size of the network by adding more pods. To that end, we
next evaluated the impact of event locality by increasing the
number of pods in the data center with one domain per pod.

Multi-domain flow completion time. We executed the Hadoop
workload using 2 server pods, each set into its own domain
with a third domain (containing 4 redundant switches) used to
interconnect them. Each domain’s control plane consisted of
4 controller replicas resulting in 12 replicas for the entire net-
work. We compared this setup to the same network topology
with a single domain and a control plane of 12 replicas.

Fig. 12c shows flow completion time using Cicero in the
single and multi-domain (MD) setup, with and without con-
troller aggregation. Thanks to their locality, most events are
processed in parallel when using multiple domains, thus
greatly reducing flow completion time compared to a single
domain. While flows crossing domains incur extra overhead,
an efficient domain architecture can reduce their number.

Multiple data centers. Our final evaluation involved pods lo-
cated in multiple data centers following Deutsche Telekom’s
topology as documented by the Internet Topology Zoo [69].
Each data center consisted of 4 pods interconnected via spine
and edge switches as described in Facebook data center topol-
ogy [67]. Each pod was set as its own domain for Cicero,
while a single controller was used for the entire network (all
data centers) for the centralized approach. We evaluated the
completion time of web server flows taking into account their
locality as reported by Facebook [37]: 15.7% traverse pods
within the same data center and 15.9% traverse data centers.

The results depicted in Fig. 12d show that the centralized
controller suffers from the increased latency for establishment
of flows across data centers. However, Cicero does not suf-
fer from this increased latency thanks to domain parallelism
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and hence performs better than the centralized approach, un-
like the single-domain setup, while being much more secure.
These results exhibit the benefits of parallelism even under the
web server workload (with 15.7%+15.9% crossing flows) that
has far less local events than the Hadoop one (3.3%+2.5%).

7 Conclusions
We present Cicero, a practical construction for secure and
consistent network updates that exploits parallelism through
dependency analysis and ensures scalability to large networks
through update domains. Threshold cryptography and dis-
tributed key generation allows for flexibility in control plane
membership with minimal switch instrumentation. Through
extensive analysis using a functional Facebook data center
topology with characteristic workloads we show that Cicero
can provide consistency and security with minimal overhead
to flow completion time. Additional optimizations using con-
troller aggregation reduce the load on data plane switches.

As future work, we plan to investigate evaluation with
other workloads including topology discovery and link state
probing. We also plan to integrate a distributed ledger in the
control plane state, coupled with the atomic broadcast com-
ponent, to help detect (potentially transient and malicious)
controller failures thanks to the auditability of their decisions.
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