
22

DEFUSE: An Interface for Fast and Correct User Space File
System Access

JAMES LEMBKE, Purdue University, USA and Milwaukee School of Engineering, USA

PIERRE-LOUIS ROMAN, Università della Svizzera italiana (USI), Switzerland
PATRICK EUGSTER, Università della Svizzera italiana (USI), Switzerland, Purdue University, USA, and TU
Darmstadt, Germany

Traditionally, the only option for developers was to implement file systems (FSs) via drivers within the

operating system kernel. However, there exists a growing number of file systems (FSs), notably distributed FSs

for the cloud, whose interfaces are implemented solely in user space to (i) isolate FS logic, (ii) take advantage

of user space libraries, and/or (iii) for rapid FS prototyping. Common interfaces for implementing FSs in user

space exist, but they do not guarantee POSIX compliance in all cases, or suffer from considerable performance

penalties due to high amounts of wait context switches between kernel and user space processes.

We propose DEFUSE: an interface for user space FSs that provides fast accesses while ensuring access

correctness and requiring no modifications to applications. DEFUSE achieves significant performance improve-

ments over existing user space FS interfaces thanks to its novel design that drastically reduces the number of

wait context switches for FS accesses. Additionally, to ensure access correctness, DEFUSE maintains POSIX

compliance for FS accesses thanks to three novel concepts of bypassed file descriptor (FD) lookup, FD stashing,
and user space paging. Our evaluation spanning a variety of workloads shows that by reducing the number

of wait context switches per workload from as many as 16,000 or 41,000 with FUSE down to 9 on average,

DEFUSE increases performance 2× over existing interfaces for typical workloads and by as many as 10× in

certain instances.

CCS Concepts: • Software and its engineering → File systems management; Software performance;
Consistency.

Additional Key Words and Phrases: Linux kernel, FUSE, user-space file systems

ACM Reference Format:
James Lembke, Pierre-Louis Roman, and Patrick Eugster. 2022. DEFUSE: An Interface for Fast and Correct

User Space File System Access . ACM Trans. Storage 18, 3, Article 22 (August 2022), 29 pages. https://doi.org/
10.1145/3494556

1 INTRODUCTION
File systems (FSs) provide a common interface for applications to access data. These interfaces

provide an abstract, high-level representation of a file, and the FS driver provides the mechanism

to translate this abstraction into input/output (I/O) operations sent to physical storage media.

Work funded in parts by ERC grant #617805, NSF grant #1618923, and SNSF grant #200021_197353.

Authors’ addresses: James Lembke, Purdue University, 610 Purdue Mall, West Lafayette, IN, 47907, USA , Milwaukee School

of Engineering, 1025 N Broadway, Milwaukee, WI, 53202, USA, lembkej@purdue.edu; Pierre-Louis Roman, Università

della Svizzera italiana (USI), Via Giuseppe Buffi 13, 6900, Lugano, Switzerland, romanp@usi.ch; Patrick Eugster, Università

della Svizzera italiana (USI), Via Giuseppe Buffi 13, 6900, Lugano, Switzerland , Purdue University, 610 Purdue Mall, West

Lafayette, IN, 47907, USA , TU Darmstadt, Karolinenpl. 5, 64289, Darmstadt, Germany, eugstp@usi.ch.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1553-3077/2022/8-ART22 $15.00

https://doi.org/10.1145/3494556

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

https://doi.org/10.1145/3494556
https://doi.org/10.1145/3494556
https://doi.org/10.1145/3494556

22:2 James Lembke, Pierre-Louis Roman, and Patrick Eugster

1.1 Implementing new FSs
Traditionally file systems (FSs) are implemented within the operating system (OS) kernel [27, 54, 95]
and accessed via system calls defined in the interface. For new FSs, implementing drivers fitting

kernel-space interfaces requires effort; porting libraries that exist only in user space [18, 41, 49] may

even be required. Despite this development effort, kernel-space implementations may be short-lived

and removed once deemed obsolete [73].

User space FSs can provide significant benefits over kernel space implementation methods

traditionally available to developers. E.g., in the event of a crash or security breach, having the FS

driver isolated from the rest of the kernel reduces the risk of data corruption [19, 45]. In particular,

microkernel-based OSs extend the rationale behind user space isolation to most services and as

such employ user space FSs by default and to great avail [26, 82]. User space FSs can also enable

rapid FS prototyping in industrial and academic research [15, 38].

Additionally, distributed storage systems such as cloud FSs (e.g., GlusterFS [33], Databricks File

System [23], Alluxio [46], Hadoop distributed file system (HDFS) [18]) and cloud object storage

systems (e.g., Google Cloud Storage [34], Amazon S3 [7]) do not have kernel-space implementations,

requiring applications to conform to user space application programming interfaces (APIs). Other

state-of-the-art distributed FS drivers [33, 36, 37, 57, 63, 74, 81] are implemented in user space to

benefit from libraries (e.g., Boost C++ library) or programming languages (e.g., Java) not available

in kernel space. While command line tools for accessing some of these FSs exist [3, 9, 35], these

tools are also FS-specific. Thus applications must conform to APIs of specific FSs which can be

cumbersome when multiple FSs are accessed, or FSs are substituted.

1.2 Interface Requirements
A sensible solution for a user space FS interface must meet the needs in:

Flexibility: applications accessing kernel space FS implementations are not required to have

knowledge of the underlying FS driver nor require modifications when using different FSs. A

user space interface should not require more. This allows applications to access a diverse set

of FSs without additional implementation efforts.

Efficiency: the overhead of the FS interface should be minimal to reach access speeds closest

to kernel space. In particular, interfacing with user space FSs can be prone to wait context

switches (waits for short), i.e., context switches used to wait for the completion of I/O

operations that involve time-consuming buffer copy between user and kernel space [93].

Access Consistency: kernel-space implementations provide a set of guarantees for consistent

accesses to files within the FS, e.g. locking semantics, permissions, inheritance of file descrip-

tors (FDs) between parent and child processes. In order to establish trust in the FS driver, any

user space implementation must also provide the same set of guarantees. In the remainder of

this paper, we refer to these guarantees on “access consistency” simply as “consistency” for

simplicity.

Existing generic solutions fall short on at least one of these requirements. That is, there is no

interface for user space FSs that provides flexibility, consistency, and efficiency all together.

1.3 State of the Art
State-of-the-art solutions rely on one of the following methods to provide user space FS interfaces:

an FS-specific user space library, an LD_PRELOAD-loaded library, or FUSE.

User space FS libraries provide an interface for FSs through compile-time binding to the drivers’

APIs. This method is neither flexible, as each API is unique and requires compile-time binding, nor

consistent, as user space FS libraries do not conform to any standard for consistent file behavior.

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

DEFUSE: An Interface for Fast and Correct User Space File System Access 22:3

The LD_PRELOAD [96] method relies on diverting system calls typically wrapped by a library (e.g.,

libc [51]) by pre-loading another library with the same interface with the goal of redefining system

call wrappers. This method can suffer from incorrect behavior that lead to failures in distributed

environments (e.g., data loss, cascading errors, outages [14]), especially with files whose FD are

inherited (e.g., Spark [99] passes data via the FS between manager and forked workers). Due to the

distributed nature of remote execution, such incorrect behavior can be difficult to detect.

Filesystem in user space (FUSE) [48] provides a common interface for an FS driver to be imple-

mented by a user space server while still allowing applications to access FSs using kernel-space sys-

tem calls.While FUSE can be used to access some of the cloud FSsmentioned above [2, 6, 8, 30, 58, 67],

FS accesses performed with FUSE suffer from major slowdowns inherent to its design [93].

1.4 DEFUSE
We present DEFUSE, a novel interface for user space FSs that employs, and combines the benefits

of, a kernel-space FS driver and a user-space library. DEFUSE offers significant performance

improvements over FUSEwhilemaintaining FD consistency unlike in aforementioned approaches [4,

59, 64, 71, 75, 85, 88, 96, 100], in particular when FDs are shared between parent and child processes.

DEFUSE achieves these characteristics through three novel concepts:

(1) bypassed FD lookup reduces the number of wait context switches and ensures that FDs are

managed by the kernel thus improving performance and achieving correct FDs behavior;

(2) FD stashing ensures continued correct behavior of FDs after the address space of a process is

cleared following a common fork/exec;
(3) user space paging further ensures correct behavior of memory-mapped files. Our experiments

show DEFUSE provides up to 10× the performance of the state of the art (i.e., FUSE) for user

space FSs.

1.5 Contributions and Outlook
This paper makes the following contributions. After reviewing the requirements and methods for

interfacing FSs and their pros and cons in Section 2, we:

• outline some of the main challenges of creating a flexible, consistent, and efficient user space

FS interface;

• present the design of DEFUSE, centering on its novel concepts of bypassed FD lookup,

FD stashing, and user space paging, and the features the design enables, such as POSIX

compliance for FS accesses and fault tolerance;

• discuss DEFUSE’s implementation, examples of user space FS integration with DEFUSE, and

practical deployment of user space FSs with DEFUSE;

• evaluate DEFUSE’s performance on several workloads and FSs, including synthetic workloads

generated and benchmarked with IOzone [39], Linux kernel compilation,and distributed

machine learning using Spark [10] involving network communication. We evaluate DEFUSE

against direct kernel mount, LD_PRELOAD-loaded library, and FUSE. Results show DEFUSE

outperforms FUSE by increasing throughput 2× on average for distributed workloads and as

high as 10× in certain cases. We show that this increased throughput directly results from

having less waits in DEFUSE.

The remainder of the paper is structured as follows. Section 3 details the challenges for creating

user space FS interfaces. Section 4 presents the design of DEFUSE, and Section 5 its implementation.

We evaluate DEFUSE’s performance in Section 6. Finally we compare DEFUSE with related work

in Section 7, and draw conclusions in Section 8.

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

22:4 James Lembke, Pierre-Louis Roman, and Patrick Eugster

Table 1. Summary of pros and cons of user space FS interfaces.

FS interface Flexibility Efficiency Consistency

User space FS library × ✓ ×

LD_PRELOAD library ✓ ✓ ×

FUSE ✓ × ✓
DEFUSE ✓ ✓ ✓

Our implementation and test environment scripts are freely available in our code repository.
1

2 MOTIVATION
In this section, we discuss in more detail the requirements needed for practical user space FS

interfaces and pinpoint how the main existing approaches fail to satisfy these requirements.

2.1 User Space FS Interface Requirements
Flexibility – FS-agnostic accesses. FSs implemented as a user space library require applications to

bind to the library’s API at compile-time in order to access the FS. Through calls to the API, the FS

library performs the necessary I/O operation; it typically involves a system call to a kernel space

driver, that backs the FS, which result is returned to the application. Execution remains within user

space except for system calls performed by the FS library. Command line tools such as cp or find
may require access to multiple FSs through a common interface and cannot be easily re-compiled

with each user space file implementation. As a result FS interfaces must be standardized.

Efficiency – low access overhead. To ensure that as much system resources as possible are allocated

to useful computations, the overhead of the OS interface should remain as low as possible. FS access

is no exception to this hence any user space FS interface should provide minimal overhead to FS

accesses with speeds matching those of a kernel-space FS implementation.

Conceptually, the time to perform an I/O system call can be divided into two parts: (i) the time

to service the system call (either through the kernel, the user space library, and/or the FUSE server)

and (ii) the time to perform the I/O operation to the storage media. The time to service the system

call can be considered overhead for the I/O operation as the useful work of completing the I/O

is reading/writing data to media. In some cases the overhead can be dwarfed by long I/O times

to storage media. However, as the speed of storage media continues to improve (e.g., solid state

drives, non-volatile memory), the system call service time, and thus the overhead of FS interfaces,

becomes more prominent. For example, the time to service the system call (e.g., trap, context switch

to kernel space) takes 10 ms while the I/O operation takes 100 ms, the resulting OS overhead is

only 10%. However if the I/O operation takes only 10 ms, then the OS overhead jumps to 100%.

Consistency – POSIX compliance for FS accesses. POSIX provides guarantees to applications

that are consistent across OSs, including guarantees on FS accesses. These guarantees on access

consistency (or just consistency) allow applications to execute without intricate knowledge of the

underlying system implementation.

As part of this, thanks to its standard interface, POSIX also guarantees the consistent behavior

of FDs for FSs. These include, among others, protection from file corruption when multiple threads

access a file concurrently, and valid FDs inheritance from parent processes after a fork operation.

1
https://github.com/jalembke/defuse

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

DEFUSE: An Interface for Fast and Correct User Space File System Access 22:5

2.2 Background
We identify user space FS libraries, LD_PRELOAD-loaded (user space) libraries, and FUSE as the three

main methods used to provide user space FS interfaces. Table 1 summarizes how these methods

comply with the aforementioned requirements.

User space FS library. With a user space FS library, the FS driver is implemented in a code library

which the application binds to at compile-time. Examples of this include the MPI-IO library [22]

used by MPI, the HDFS C API libhdfs [47], and the AmazonWeb Services (AWS) SDK for C++ [13].

Flexibility (×): A user space FS library does not provide the flexibility of a kernel space system

call. Since there is no standardized API for user space FSs, applications must have prior

knowledge of FS function calls to perform I/O operations. Access to multiple FSs implemented

as user space FS libraries requires conforming to each FS API. For example, libhdfs uses
hdfsOpenFile to open a file and hdfsCloseFile to close it. AWS SDK uses different calls.

Efficiency (✓): Due to the direct binding to the user space FS library, calls to the FS tend to be

efficient. Access to FS operations are made through direct function calls.

Consistency (×): User space FS libraries do not necessarily provide consistency guarantees. Since

the implementation uses its own API for FS access and file metadata is maintained within the

library, it is not required to comply to a standardized interface as with FUSE or kernel-space

(enforced through the virtual file system (VFS)). Thus POSIX behavior is not guaranteed [28].

LD_PRELOAD library. A user space FS library does not conform to a standard API such as POSIX.

This limitation can be prohibitive to applications that desire to use a user space library, but are

created to operate using POSIX calls. Therefore, the research community has explored several

methods to implement POSIX-looking efficient interfaces for user space FSs using LD_PRELOAD [4,

59, 64, 71, 75, 88, 96] or linkable libraries [85, 100] that provide access to FSs by intercepting system

calls. An LD_PRELOAD (-loaded) library, being loaded before libc, causes its versions of the functions
to be invoked in lieu of those of libc. Intercepted I/O calls are sent to the user space FS library via

its API, keeping control flow within user space until the operation must be passed to the kernel.

An application thus executes as if calls were made to the kernel. Accessing different FSs requires

changing the LD_PRELOAD library.

Static binding with LD_PRELOAD. Applications that use static binding link their function calls

to the function definitions at compile time rather than at runtime. Since LD_PRELOAD is based on

intercepting function calls at runtime by being loaded before libc, it cannot intercept applications
that use static binding.

Flexibility (✓): Similarly to FUSE and kernel space implementations, applications access FSs via

system calls. Applications only need knowledge of existing system calls for FS access, not of

the underlying FS driver. This flexibility is provided when multiple FSs are accessed, granted

each FS has its own LD_PRELOAD library to intercept those calls.

Efficiency (✓): As system calls are intercepted and redirected in user space, the efficiency of the

LD_PRELOAD approach is comparable to that of a user space FS library.

Consistency (×): The POSIX behavior of FDs and return codes is not guaranteedwith the LD_PRELOAD
scheme, especially for FDs inherited from parent to child processes (cf. Section 3.2.1). Further-

more, the LD_PRELOAD library must invoke the user space FS library’s API which does not

necessarily comply with a standard for file metadata representation. Thus, to ensure POSIX

behavior, LD_PRELOAD must maintain a mapping between the FS library’s file metadata and

FDs returned to the application. Maintenance of this mapping is trivial in most cases and can

consist of a hash translating an FD, manufactured by the LD_PRELOAD library (e.g., a number)

when it intercepts an open library wrapper call, to the metadata of the FS library. This table

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

22:6 James Lembke, Pierre-Louis Roman, and Patrick Eugster

Direct mount LD_PRELOAD FUSE

W
r
i
t
e
t
h
r
o
u
g
h
p
u
t
(
M
B
/
s
)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

(a) Small file
0

50

100

150

200

250

(b) Mixed file
0

50

100

150

200

250

(c) Large file

Fig. 1. Write throughput of a direct mounted ext4 FS, an LD_PRELOAD library and a FUSE wrapper around
ext4 (higher is better). FUSE’s throughput ranges between 34% and 44% that of direct mount.

can be stored in the application’s memory; if the table is lost, as with a call to exec, FDs are
invalid in a child process.

Filesystem in user space (FUSE). With FUSE, when a system call induces an I/O operation sent to

the kernel, the FUSE kernel driver sends the I/O request to user space through a FUSE virtual device

(/dev/fuse). The request is received by the FUSE server in user space and sent to the relevant FS

library through an interface similar to that of the VFS [53]. The I/O operation is then processed by

the user space server (and may include calls to kernel resources). Results are passed back through

the FUSE device to the kernel driver, and finally to the application that issued the I/O operation.

Flexibility (✓): FUSE provides the benefit of FS-agnostic access for applications through system

calls without prior knowledge of the underlying FS.

Efficiency (×): The transfer of control between kernel and user space when servicing a system

call — a core design decision behind FUSE — requires costly context switching and buffer

copying between processes of different spaces. This leads to serious performance penalties

(cf. Section 3.1) which hinders deployments in production environments, centering FUSE’s

use to FS prototyping [1].

Consistency (✓): While I/O requests are processed by the FUSE server in user space, as the ap-

plication accesses the FS through system calls, POSIX compliance is enforced by FUSE’s

kernel driver. FUSE manages a mapping in user space from inode numbers maintained by

the kernel to FUSE file information passed to the FS implementation.

3 CHALLENGES
This section elaborates on challenges in achieving a user space FS interface that reconciles direct

mount’s efficiency with FUSE’s flexibility and consistency.

3.1 Efficiency
While FUSE is both flexible and consistent, it suffers from poor performance due to a high number

of waits, i.e., voluntary context switches used to wait for the completion of an I/O operation [52].

We demonstrate this overhead in Figure 1 and Figure 2 that depict write throughput and number

of waits, respectively. We compared three interfaces: (i) direct access to an ext4 FS using POSIX
system calls to the kernel-space ext4 driver, (ii) an LD_PRELOAD library storing its own FD table,

and (iii) a FUSE server that simply wraps over POSIX calls (fusexmp [29]). Interfaces were tested
with three write-based workloads: (a) small file – 4,096 writes of 128 B to different files, (b) mixed

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

DEFUSE: An Interface for Fast and Correct User Space File System Access 22:7

Direct mount LD_PRELOAD FUSE

N
u
m
b
e
r
o
f
w
a
i
t
s

1

101

102

103

10
4

105

(a) Small file
1

101

102

103

10
4

105

(b) Mixed file
1

101

102

103

10
4

105

(c) Large file

Fig. 2. Number of waits for the benchmarks used in Figure 1 obtained with the command time %w [52] (log
scale, smaller is better). FUSE causes tens of thousands of waits while direct mount and LD_PRELOAD only ≈9.

file – 2,048 writes of size linearly distributed between 64 B and 128 kB to different files, and (c)

large file – 1 write of 128 MB to a single file.

FUSE’s throughput, shown in Figure 1, is visibly worse than the kernel-space baseline in all

workloads: 43% and 44% of the direct mount throughput for the small file and large file ones,

respectively, and even 34% for the mixed file one. The LD_PRELOAD library performs much better,

especially when there are fewer operations since LD_PRELOAD’s overhead is proportional to the

number of system calls intercepted, with throughputs of 87%, 93%, and 97% of direct mount for small,

mixed, and large file workloads, respectively. Figure 2 further shows that FUSE’s throughput drop

is mostly due to the considerable amount of waits, with numbers as high as ≈20,000, ≈41,000, and

≈33,000 for small, mixed, and large file workloads, respectively. The LD_PRELOAD library however

is on par with the direct mount solution, causing less than 10 context switches on average.

Specifically, an I/O wait entails a context switch between kernel and user space FUSE server

which includes (1) saving processor state, (2) changing processor mode, and (3) copying data

between kernel and user space buffers [93]. While (1) and (2) induce little overhead, (3) is costly.

3.2 Consistency
The LD_PRELOAD library interface seems attractive in light of the results presented in Section 3.1.

However, this interface as well as user space FS libraries are subject to two challenges related to FS

consistency: the first concerns FD heritage and the second memory-mapped (user space) files.

3.2.1 FD heritage dilemma. As explained in Section 2.2, when an LD_PRELOAD library is used, the

mapping table between FDs and user space file metadata may be stored in memory. However, while

open FDs and the internal state of the FS maintained by the LD_PRELOAD library are copied from

parent to child upon a fork, the FS state is destroyed when the child invokes exec if it is in memory.

Illustration. Consider the processes in Figure 3: (a) User process p, in the LD_PRELOAD environ-
ment, executes library function wrapped system calls that are intercepted by the LD_PRELOAD
library. (b) Both the LD_PRELOAD and FS libraries are stored in shared memory and the internal

state of the FS resides within the address space of p. (c) When p performs an open system call,

the LD_PRELOAD library makes the corresponding call to the FS library. The FS returns an internal

representation of the file as F . Process p expects an FD number to be returned from open, not the
internal representation of F . (d) To avoid passing the open call to the kernel (to not increase latency),
the LD_PRELOAD library manufactures FD 4, updates its internal file mapping 4 to F , and returns the
manufactured FD to p. This manufactured FD is only valid in the context of the LD_PRELOAD library
and only if the mapping is in memory. Future system calls using FD 4 will be intercepted by the

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

22:8 James Lembke, Pierre-Louis Roman, and Patrick Eugster

Internal File
System State

LD_PRELOAD
Library

File System
Library

Internal File
System State

(e)(a)

(b)

open

(d)

(c)

(c)F

F

4

(d)

w
rit

e
to

 4

(f)

VFS

(h)

LD_PRELOAD
Library

File System
Library

Operation is
incorrectly sent
to the kernel

User Space Kernel Space

Parent Process - p Child Process - c

(g)

Fig. 3. Illustration of an error caused by FDs inherited between parent and child with the LD_PRELOAD library.

LD_PRELOAD library, mapped to F and passed to the FS library. (e) Process p creates child process

c which inherits, among other things, the open FDs and the memory of the LD_PRELOAD library.
After performing an exec, the child’s address space, including the internal state for manufactured

FDs, is destroyed by the executable of c . (f) Process c later writes to the inherited FD 4. (g) As the

LD_PRELOAD library memory was cleared during exec, the library cannot map FD 4 to F , so it passes
this I/O to the kernel. (h) The kernel does not know what FD 4 references since the LD_PRELOAD
library of parent process p manufactured it. Ultimately, the operation fails in the kernel with an

invalid FD and is returned to c via the LD_PRELOAD library.

Prominent examples. The FD heritage dilemma occurs commonly in shell file redirection. Consider

a shell running under the context of an LD_PRELOAD library, where the user executes a cloud

application running in Spark [99] by running spark-submit ... > out.txt to capture the output
to a file located in a user space FS. The shell opens out.txtwhich is intercepted by the LD_PRELOAD
library prior to creating the spark-submit process. Due to the FD heritage dilemma, the FD for

the output file out.txt inherited by the child is no longer valid after the exec call to invoke

spark-submit. The FD heritage dilemma is also common in widely used tools such as gcc that

create child processes for performing subtasks, and in resource manager frameworks such as the

PySpark workload daemon [76], which creates child processes for worker tasks at runtime, with

each child task sending and receiving data to and from the daemon through FDs.

Impact in other interfaces. The user space FS library interface suffers from a related problem

if a parent process needs to pass file metadata to a child. The application must be aware of the

FS library API and does not access the FS using FDs, it instead uses the user space file metadata

directly. As with open FDs, child processes cannot inherit file metadata.

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

DEFUSE: An Interface for Fast and Correct User Space File System Access 22:9

FUSE is not affected by the FD heritage dilemma since the FUSE server is a single process,

separated from the application processes. Hence the FUSE identifier table is unique. When a parent

opens a file, the corresponding (inheritable) FD matches a unique inode within kernel space.

Similarly to FUSE, in-kernel FSs are not affected by FD heritage dilemma since all file structures

are managed within the kernel address space. References to files are synchronized by the FS driver

within the kernel to ensure consistency when accessed by applications via FDs. The FDs maintained

by the kernel and inherited by child processes map to a unique inode within kernel space.

3.2.2 Memory-mapped files. Mapping files into memory using mmap is a common method to share

memory between processes. The LD_PRELOAD interface cannot provide consistent memory-mapping

of files hosted by user space FSs for the two following reasons.

First, while an LD_PRELOAD library can intercept explicitly invoked system calls such as mmap, it
cannot intercept implicit I/O operations. For instance, accesses to a memory-mapped file such as

reads and writes are performed using load and store paging instructions to the address region of

the mapped memory. These instructions, which may result in an I/O operation to the underlying

file, are not explicit system calls and therefore cannot be intercepted.

Second, as a direct consequence of the FD heritage dilemma, a child process cannot access a user

space file mapped in memory if the mapping has been done by its parent process. For example,

consider the following set of actions taken by a process: (a) A process opens a user space file, the

open call is intercepted and redirected to the user space FS library. (b) The process then maps this

file into its address space using mmap for shared access, however since the FD is manufactured by

the intercepting FS library, the call to mmap fails because the FD is invalid.

Impact in other interfaces. Directly linked user space FS libraries equally suffer from the same

problem for mmap-ed files as LD_PRELOAD libraries do. FUSE does not, however, since the FUSE

kernel driver translates paging operations to read or write sent to the user space FUSE server.

4 DEFUSE DESIGN
We present the design of DEFUSE centering on its novel concepts and the features it enables.

4.1 Overview
DEFUSE uses a unique four-fold approach to be the first solution that achieves flexibility, efficiency,

and consistency all together (cf. Table 1). As shown in Figure 4, our approach comprises:

(1) a hook into libc to intercept and forward FS access calls to a user space FS library — for

flexibility and efficiency (Section 4.2);

(2) an FS kernel driver providing bypassed FD lookup semantics to ensure FDs are managed

by the kernel and remain correct when inherited by child processes — for consistency and

efficiency (Section 4.3);

(3) a shared memory space for FD stashing, allowing FS metadata to be restored after a process’s

address space is cleared by an exec call — for consistency (Section 4.4);

(4) a memory management framework for user space paging to correctly handle memory mapped

pages backed by user space files — for consistency and efficiency (Section 4.5).

We demonstrate how DEFUSE’s design maintains POSIX compliance for FS accesses (Section 4.6),

why it provides better fault tolerance than FUSE (Section 4.7) and how it delegates caching to the

respective user space FS libraries to ensure cache consistency (Section 4.8).

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

22:10 James Lembke, Pierre-Louis Roman, and Patrick Eugster

libc

User Process

File System
Library

(a)

DEFUSE Driver

(c)

shadow inode

User Space Kernel Space

DEFUSE

(b) open

File Descriptor
Mapping Table

F4(d)(e) read(4)

read(F)

Fig. 4. Handling of I/O requests in DEFUSE. I/O requests are intercepted by DEFUSE’s libc extension and
directed to the user space FS library. Requests for open are sent to the DEFUSE kernel driver to allocate a
valid inode and FD. FDs are temporarily stashed when an exec is intercepted (cf. Figure 5).

4.2 System Call Redirection
Performance gains of DEFUSE come from redirecting I/O operations directly to the user space FS library
through hooks in libc, thus avoiding waits presented in Section 3.1. Such hooks are used in other

systems for language extension [69] or behavior customization [25]. DEFUSE implements these

hooks by directly modifying the system call wrapper functions within the libc. Once installed,
applications that dynamically link to libc are automatically be able to take advantage of the

DEFUSE functionality, while those that statically link against libc needs to be recompiled. While

implementing system call redirection could have also been implemented using an LD_PRELOAD
library, from our experience, the environmental setup of LD_PRELOAD can be problematic.

In addition to wrapped system calls, applications may also execute direct system calls that

are made through direct invocation of a trap. These direct calls cannot be intercepted neither

by hooks in libc nor using LD_PRELOAD, and hence fall out of the scope of DEFUSE. However,

invoking direct system calls can be a cumbersome task for application developers [80] as it requires

knowledge of the application binary interface (ABI) used for system calls. Since the ABI may differ

between OSs and architectures, using the ABI directly can result in portability issues. As such, it

is our understanding that most applications rely on libc wrappers for system call invocation for

convenience and can use DEFUSE without strong limitations in their functionalities.

4.3 Bypassed FD Lookup
Every open system call received by the kernel requires the inode of the file to be resolved through

one or more lookup requests. One lookup request is required per level of the directory tree to

ensure the file path is valid and the user has sufficient access permission. When the file being

opened is hosted on an FS accessed via FUSE, this requires a separate request sent by the FUSE

kernel driver to the user space FS library and thus require waits. Opening a file deep in the directory

tree with FUSE can be costly because of this series of lookups.
To avoid the many transfers between kernel and user space, DEFUSE makes use of its own kernel

driver to provide bypassed FD lookup. Thanks to bypassed FD lookup, the kernel does not need to

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

DEFUSE: An Interface for Fast and Correct User Space File System Access 22:11

+++__

(d)

ex
ec (a)

Shared Memory
(c)

libc

Child Process (c)

File Descriptor
Mapping Table

File System
Library

(b) save

(e) restore
DEFUSE

F4

Fig. 5. Depiction of how DEFUSE’s FD stashing uses a shared memory segment to save and restore the
internal state of the DEFUSE FD mapping table before and after the invocation of an exec system call.

send the lookup requests to a server in user space when it opens a file. Instead of resolving to a

real inode for the file, the DEFUSE kernel driver creates and splices a shadow inode (i.e., add an

entry [86]) in the directory cache of the FS, then allocates an FD for the file, and finally allows the

open to proceed to the user space FS library. This shadow inode represents a placeholder for the
file within the directory cache of the system and is not usable for read and write operations. In

turn, file permission checks, reading, and writing are performed by the user space FS library and

enforced by the DEFUSE libc extension (cf. Section 4.2). The shadow inode is removed by the

kernel when all references to its file are removed. This may happen through explicit close system

calls related to the file and/or upon termination of the process, either explicitly or implicitly (e.g.,

process crash), as the kernel frees all resources allocated to the process.

Figure 4 depicts the management of I/O requests, and in particular open requests, by DEFUSE:

(a) An I/O system call is generated by the application. The system call is invoked as a library

call to libc, which is intercepted by DEFUSE as explained in Section 4.2.

(b) For open system calls, the operation is sent to the FS library to update the internal state of

the FS as well as retrieve a reference to the FS metadata. The open call is also sent to the

kernel to allocate a valid FD.

(c) The DEFUSE kernel driver allocates a shadow inode, initializes the FD entry for the file, and

returns the FD to the user application. Once an FD is created by the DEFUSE kernel driver, it

serves as index of the FD mapping table managed by DEFUSE to retrieve the matching user

space FS metadata. The FD mapping table is stored in the application process memory (cf.

Figure 4 for DEFUSE’s overview); hence opened files cannot be accessed by other processes.

(d) DEFUSE then maps the returned FD to the FS metadata returned from the FS library.

(e) When the application requests access to the file (e.g., read), the request is again sent to libc
and intercepted by DEFUSE. DEFUSE then uses the FD mapping table to retrieve the user

space FS metadata and sends the request directly to the user space FS library through its API.

Note that DEFUSE uses a shadow inode for bypassed FD lookup, which requires the system to be

installed with the DEFUSE kernel module. One possible alternative involves using an existing file

(e.g., /dev/null) instead of a shadow inode. This has the advantage of not requiring the DEFUSE

kernel module, however, would not maintain expected FS semantics (e.g., file position pointers,

fcntl locking, file data in /proc). DEFUSE complies with POSIX for FS accesses (cf. Section 4.6).

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

22:12 James Lembke, Pierre-Louis Roman, and Patrick Eugster

4.4 Managing FDs across exec with FD Stashing
As described in Section 3.2.1, once a fork system call completes, the memory of the child process is

a duplicate of its parent. Subsequently, if the child process executes an exec system call, its memory

is replaced with the memory of the program to be executed. While bypassed FD lookup ensures that

FDs are correctly inherited by a child process, it does not prevent FDs from being erased alongside

the rest of the process memory upon exec’s execution. Without additional management, future

accesses by the child process to its FDs will fail.

To ensure correct FD semantics after a call to exec, DEFUSE utilizes a novel concept we call FD
stashing that temporarily saves, then restores, FDs during the execution of an exec system call. As

depicted in Figure 5, FD stashing operates as follows:

(a) The exec system call is intercepted by the DEFUSE libc extension.

(b) The save routine in the user space FS library is invoked to allow the FS library to perform

any necessary action to save file meta data.

(c) The internal state of the DEFUSE FD mapping table is saved to a shared memory segment.

(d) After the exec system call, and the memory of the process erased, if the process executes an

I/O system call, the FD mapping table is restored from the shared memory segment.

(e) Further, the restore routine in the FS library is invoked to allow the user space library to

restore the saved state of the file.

Subsequent I/O calls continue to be intercepted and sent directly to the user space FS library.

While a shared memory segment is typically used to share data between multiple processes,

DEFUSE instead uses a segment to share data (i.e., the FDs) between a process and a future version

of itself, once the call to exec completes. Since the shared memory segment storing the FDs is

unmapped from a process’s address space after a call to exec, DEFUSE uses the process identifier

to remap the segment when the child process resumes execution upon completion of the exec.

4.5 Managing mmap and User Space Paging
As described in Section 3.2.2, memory-mapped files are accessed via I/O operations that rely on the

load and store instructions instead of system calls like read and write. These operations cannot
be intercepted by the DEFUSE libc extension as presented in Section 4.2.

However, the userfaultfd interface for managing page faults in user space [87] has been added

in Linux kernel 4.3. Originally implemented to help Linux-based hypervisors handle virtual machine

migration, it allows a user space application to register a virtual address range with the kernel and

subsequently be sent an event when a page within that range needs to be copied into memory.

Events are received by reading from a special FD created by userfaultfd via a system call. Upon

receiving an event, page data is copied into memory using the ioctl system call. To inform the

page fault manager on virtual address space layout changes, userfaultfd also supports calls to
fork and events for memory remapping (mremap), unmapping (munmap), removal (as result of a

madvise call using MADV_REMOVE and/or MADV_DONTNEED).
DEFUSE takes advantage of userfaultfd to intercept and manage memory-mapped file I/O. As

depicted in Figure 6, DEFUSE’s user space paging operates as follows:

(a) The mmap system call is intercepted by the DEFUSE libc extension.

(b) The mapped address and corresponding FD are stored in a memory region mapping table.

(c) A userfaultfd is created to allow the kernel to signal to DEFUSE when a page fault within

the address space occurs.

(d) When DEFUSE receives such a signal from the kernel, DEFUSE uses the memory region

mapping table to determine which virtual address ranges (for which a fault was emitted)

correspond to which FDs along with the offset within the file.

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

DEFUSE: An Interface for Fast and Correct User Space File System Access 22:13

m
m

ap (a)

libc

Process

Memory Region
Mapping Table

DEFUSE

userfaultfd

FA

Page Fault
Manager

(b)

(c)

(d)

File System
Library

(e)

Fig. 6. Depiction of how DEFUSE utilizes userfaultfd and a memory mapping table for user space paging.

(e) DEFUSE then sends a read directly to the user space FS library copying the resulting data

into the virtual address space of the process using ioctl.

When an address range is unmapped via munmap, DEFUSE intercepts the call, ensures the pages

are flushed to the user space file, removes the entry from the memory region mapping table,

and unregisters the userfaultfd. DEFUSE makes use of the userfaultfd events for remapped

addresses (remap and fork) to ensure that the address space mapping table is kept up to date as the

process’s virtual address map changes.

As an alternative to userfaultfd for user space memory management, we could also protect the

memory region using mprotect and have DEFUSE handle the SIGSEGV signal sent by the kernel.

However, servicing this signal has a significant performance impact [92].

4.6 Maintaining POSIX Compliance for FS Accesses
Enforcing file permissions. File permissions are used to properly isolate applications. The kernel

is responsible for checking that applications have sufficient permission when opening a file so that

later read/write operations succeed. DEFUSE enforces access permissions by invoking the access
function provided by the user space FS library upon intercepting an open system call. If access is

not allowed DEFUSE prevents the intercepted open system call from completing successfully.

File position pointers. Internal file position pointers, which keep track of read/write offsets, must

be consistent between parent and child processes. Consider a parent process opening a file, reading

some amount of data from the file (advancing the internal file position pointer), then creating

a child process passing it this opened FD. The child inherits the opened FD, along with the file

position pointer, and then reads from the file expecting the data to be read at the inherited position.

Since DEFUSE utilizes a DEFUSE kernel driver to create a FD in the kernel, the internal file position

pointer is managed by the kernel to ensure consistency between parent and child processes. As

DEFUSE intercepts all read and write operations, redirecting them to the user space FS library, the

file position pointer is maintained in the kernel by using the lseek system call.

Parallel file access. For parallel file access, read and write operations to files must be performed

atomically. For example, if one thread performs a file read, DEFUSE adjusts the file position pointer

using lseek. However, if another thread performs a write to the same file at the same time, DEFUSE

also adjusts the file position pointer using lseek. To ensure that there is no contention for the file

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

22:14 James Lembke, Pierre-Louis Roman, and Patrick Eugster

data and position pointer, DEFUSE uses fcntl to lock the file with each I/O operation. This lock is

maintained by the DEFUSE kernel driver through the shadow inode. DEFUSE similarly ensures

atomicity of further operations capable of generating race conditions (e.g., dup2, dup3).

Paging. POSIX behavior requires that (1) mmap succeeds for a valid FD, and that (2) if the file is

mapped for shared memory, then the mapping should also be valid within a child process created

with fork. DEFUSE complies with this requirement thanks to user space paging and FD stashing.

Accessing multiple FSs. In a kernel space implementation, FSs are mounted in the directory tree.

This mounting allows the kernel to send I/O operations to the appropriate FS driver. Similarly, the

DEFUSE kernel module also presents a FS to the system to perform bypassed FD lookup. Each user

space FS must be independently associated with a DEFUSE mount. DEFUSE uses this mount to

determine which user space FS library to send system calls to. Details are discussed in Section 5.3.

4.7 Fault Tolerance
Failures in an FS can result in loss of access or even total loss of the data itself if it is not written to

permanent storage. Being contained within the running process, DEFUSE requires no centralized

server process. DEFUSE duplicates the FS logic to each process accessing the FS and a failure in the

process thus does not affect other processes using DEFUSE. In contrast, FUSE relies on a single

server process running in user space that may crash (due to, e.g., program error, explicit termination

by a user). Upon FUSE server failure, accesses to the FUSE FS fail for all processes in the system.

4.8 Cache Delegation
DEFUSE does not manage a cache. Instead, DEFUSE delegates caching to the user space FS libraries

it relies on. While FUSE uses a single server to avoid cache inconsistencies (e.g., duplicate entries)

across all FSs, DEFUSE’s delegation resembles an approach using one server per process.

5 DEFUSE IMPLEMENTATION AND SEMANTICS
We present DEFUSE’s implementation, the user space FSs it already supports, and how to deploy it.

5.1 Code Base and Interface
The DEFUSE driver is a Linux kernel module made up of ≈300 source lines of code (SLOC) and the

DEFUSE library of ≈2,000 SLOC which includes additions and modifications to libc. Integrating a

user space FS in DEFUSE requires implementation of ≈25 functions that are similar to the high-level

interface of FUSE defined in fuse.h [31]. We opted for an interface similar to the high-level one of

FUSE, over its low-level one, since it is simpler for developers to reason about file paths instead of

inodes and to not have to manage the mapping between inodes and file paths themselves. From

our experience many FUSE implementations use the high-level interface [6, 8, 49, 61] while some

state-of-the-art [100] also base their implementation on the high-level interface.

Prototypes for the interface functions are provided in Listing 1. Each function is required to

return an error value as described by the system error numbers (i.e., errno). Function output is

specified by output parameters (using references). FS integration only requires a shared library that

exports the needed interface functions. DEFUSE loads the library (dynamically) as needed when a

user space FS is accessed.

5.2 User Space FS Integrations
To test ease of implementation, we integrated several user space FSs with the DEFUSE interface.

These FSs are listed in Table 2:

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

DEFUSE: An Interface for Fast and Correct User Space File System Access 22:15

// File system operations
void init(const char* mount_point , // Initialize the FS mounted at specified

const char* backend_path); // mount point (called after FS lib is loaded)
void finalize (); // Un-initialize FS (before FS lib is unloaded)

// File operations
int open(const char* path , int flags , // Open file - out_fh is the file handle

mode_t mode , uint64_t* out_fh); // used to later access the opened file
int close(uint64_t fh); // Close a file
int read(uint64_t fh, char* buf , size_t size , // Read data from a file

off_t offset , size_t* bytes_read);
int write(uint64_t fh, const char* buf , size_t size ,// Write data to a file

off_t offset , size_t* bytes_written);
int fsync(uint64_t fh, int data_sync); // Synchronize state and store of file
int ftruncate(uint64_t fh, off_t length); // Truncate an opened file to given length
int fgetattr(uint64_t fh, struct stat* stbuf); // Retrieve an opened file's attributes
int save(uint64_t fh); // Save file handle data (before FD stashing)
int restore(uint64_t fh); // Restore (FD stash, then) file handle data
int getattr(const char* path , // Retrieve file's attributes by path name

struct stat* stbuf , int flags);
int trunc(const char* path , off_t length); // Truncate a file by path name
int readlink(const char* path , char* buf , // Read a symbolic link

size_t bufsize , size_t* bytes_written);
int unlink(const char* path); // Remove a file by path name

// Directory operations
int mkdir(const char* path , mode_t mode); // Create a directory
int rmdir(const char* path); // Remove a directory
int getdirentcount(const char* path , int* count); // Get directory entry count
int getdirents(const char* path , DIR* dirent_buf , // Get directory entries

size_t bufsiz , size_t* ents_written);
int chown(const char* path , uid_t uid , gid_t , gid); // Change ownership of a file/directory
int chmod(const char* path , mode_t mode); // Change permissions of a file/directory
int access(const char* path , int mode); // Check permissions of a file/directory
int rename(const char* oldpath , const char* newp); // Rename a file/directory
int utime(const char* path , // Update access and modification time

const struct utimbuf* times); // of a file/directory
int symlink(const char* target , const char* linkp); // Create symbolic link to file/directory

Listing 1. DEFUSE interface similar to that of FUSE. Green text highlights functions called by DEFUSE itself.

(1) The direct wrapper FS wraps the I/O operations directly to their corresponding system call.

The corresponding implementation for FUSE is the pass-through function of fusexmp [29].

(2) A Virtual File System (AVFS) [12] enables applications to look inside compressed files (e.g.,

gzip, tar, zip) without an additional decompression tool. This FS provides a user space library

that contains the functions for FS operations.

(3) CRUISE [68] is a checkpoint/restart file system for high performance computing applications.

This FS provides a user space library that contains the functions for FS operations.

(4) SSHFS [49] grants applications access to remote files through the secure shell network (SSH)

protocol. Our implementation consists of a port from the existing FUSE implementation.

(5) HDFS [47] grants applications access to the storage component of Hadoop without using the

HDFS API. Our implementation consists of a port from the existing FUSE implementation.

Using SLOC to evaluate integration effort, we conclude it takes relatively similar effort to integrate

a user space FS in FUSE and DEFUSE.

5.3 Deploying a DEFUSE-backed User Space FS
The DEFUSE kernel module parses mount parameters to know which user space FS library is

associated to each mounted FS. Consider the following command to access an FS with DEFUSE:

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

22:16 James Lembke, Pierre-Louis Roman, and Patrick Eugster

Table 2. Integration effort of example user space FSs in DEFUSE and their FUSE equivalent.

User space FS Integration methodology DEFUSE SLOC FUSE SLOC

Direct wrapper Simple wrapper 280 402

AVFS Simple library wrapper 304 308

CRUISE Simple library wrapper 274 503

SSHFS FUSE port
a
(≈150 SLOC changed) 4,803 4,956

HDFS FUSE port
b
(≈150 SLOC changed) 26,757 26,713

a
Ported from libfuse SSHFS [49].

b
Ported from native-hdfs-fuse [61]. This FUSE implementation does not use libhdfs [47] and is there-

fore not bound by the use of the Java virtual machine.

mount -t defuse -o backend=/src/dst -o library=/usr/usfs.so defuse /mnt/fs

In this example the DEFUSE bypassed FD lookup FS is mounted at /mnt/fs, the user space
library to redirect calls to is located in /usr/usfs.so while the back-end location for this FS is

/src/dst. The library option must be a path in the FS (outside of DEFUSE) that contains the user

space FS implementation. While the back-end is required by DEFUSE, it does not need to be a path;

it is intended to serve as information for the user space FS implementation to determine how to

access files and directories. It may be a path (as in the example), a file (e.g., an FS image), a network

host name (e.g., for a network based user space FS), etc.

When an application makes its first access to the FS, DEFUSE retrieves the user space library

path from the mount point and invokes init (cf. Listing 1) to initialize the FS before any other calls
are processed. When the application completes, the finalize function is invoked to allow the user

space FS to clean up any created data structures.

6 EVALUATION
We evaluated DEFUSE against other FS interfaces with workloads generated following standard

methods and real-life functional workloads. Overall DEFUSE’s data and metadata throughput

significantly outperforms that of FUSE, in some cases achieving 10× speedups, while even our

evaluations with distributed workloads involving communication over the network show that

DEFUSE can still achieve 2× speedups over FUSE. Further analysis shows that speedups are a direct

result of reduced wait context switch overhead, in some cases from 16,000 or 41,000 with FUSE to 9

with DEFUSE, and that DEFUSE’s FD stashing displays negligible runtime overhead (e.g., 8.9 µs for

1,024 FDs). In addition to throughput, DEFUSE’s user space paging performs as well as FUSE’s

for reads and 1.8× better for writes. Lastly, we show DEFUSE also performs up to 2× better than

FUSE when accessing the user space AVFS.

Every figure throughout this section depicts averaged results with error bars of one standard

deviation from the geometric mean. Most results were averaged over 50 runs, except for the results

in Figure 9c, Figure 11, and Figure 12 that were averaged over 20 runs due to long runtimes.

6.1 Single-machine Evaluation
We first evaluated DEFUSE on a single machine observing I/O throughput and induced number of

waits using IOzone [39], runtimes of three throughput-intensive applications (i.e., kernel archive

decompression, backup and compilation), as well as runtimes of file metadata operations.

6.1.1 Setup. First we describe the setup required for our experiments.

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

DEFUSE: An Interface for Fast and Correct User Space File System Access 22:17

Hardware. Benchmarks were performed on a single machine running Ubuntu 18.04.1 LTS with

kernel version 4.15.0-43, two Intel®Xeon® E5-2420 processors with 2.2 GHz, 24 GB of main memory

with SATA-attached 256 GB SSD and 1 TB HDD running at 7200 RPM. With the exception of tmpfs,
which uses system memory, the backing storage for all evaluated FSs use the attached HDD.

Caching policy. FS caches were cleared between each I/O operation of the benchmarks to remove

any effect of caching. Files were flushed to disk (fsync) after each write operation.

FSs. We used ext4 [27], JFS [42], FAT [56], and tmpfs [90]. Both ext4 and JFS were chosen due

to their large install base in consumer Linux as well as industry servers. While FAT is no longer a

commonplace FS for PCs or industry servers, it was chosen for evaluation due to its prevalence

in external media. Finally, tmpfs was chosen for its low I/O overhead since it resides in memory,

allowing us to isolate the FS logic overhead. Note that for FSs built on actual media, the time spent

for I/O operations on the media itself may overshadow the time performing FS logic.

Baselines. We compared DEFUSE to (1) an LD_PRELOAD library, (2) Direct-FUSE [100], (3) FUSE

(v2.9.7) with and without direct I/O enabled, and (4) an FS mounted using a kernel driver.

The LD_PRELOAD library maintains its own FD table (cf. Section 2.2) that is thus invalid when

inherited. Direct-FUSE is a user space FS interface built as an extension to the libsysio library [89].
Like DEFUSE, Direct-FUSE intercepts I/O system calls using hooks in libsysio. However, Direct-
FUSE has similar drawbacks as the LD_PRELOAD approach, i.e., it does not address the FD heritage

dilemma nor user space paging. LD_PRELOAD and Direct-FUSE are inconsistent solutions, they

are included for comparison only. The user space FS library for DEFUSE and FUSE is a simple

wrapper over POSIX system calls, as expressed in Section 5.2. Using direct I/O with FUSE makes

I/O operations skip kernel FS caches.

Benchmarking tool. We used the widely adopted IOzone [39] FS benchmarking tool — a user space

application that creates, writes, and reads files of varying sizes using POSIX system calls. IOzone

generated three workloads described further alongside the corresponding results in Section 6.1.2.

I/O throughputs were measured in terms of data read/written per second. The depicted results

were normalized as a ratio of the direct mount to simplify comparisons (otherwise the greatly

varying access performance for different FSs would render some figures’ y-axis hardly readable).

6.1.2 Throughput results. We evaluated file access throughput separately for small and large file

as well as for a mixture of files with different sizes.

Small files. We evaluated the FSs for small file accesses where a large quantity of system calls

must be serviced. IOzone created 4,096 files of 128 B in size. This workload is prevalent in many

parallel computing applications [17, 21] where large quantities (sometimes in the millions) of files

smaller than 64 kB are used to store checkpoint data. Due to the large quantity of system calls

needed to create, write, and read that many files, we expected FUSE’s performance to be greatly

affected as a large quantity of system calls requires an equally large quantity of waits.

Overall, as Figure 7a and Figure 7b show, DEFUSE always achieved within 10% of the best-

performer LD_PRELOAD while the inconsistent Direct-FUSE was within 1%. DEFUSE reached at best

equivalent throughput to direct mount (write with FAT) yet at worse 50% (read with tmpfs). The
lower performance is primarily caused by the additional time spent resolving FS metadata from the

FD mapping table, however it is only minor when compared to the overhead of FUSE. Direct I/O

for FUSE has negligible effect on performance as the benefits are lost due to the small buffer sizes

and the large number of system calls to be serviced (cf. discussion on Figure 8).

The direct mount actual throughput varied across FSs: (a) ext4 had 2.6 MB/s write and 6.8 MB/s

read throughputs, (b) JFS was slower with 1.1 MB/s write and 4.8 MB/s read throughputs, (c) FATwas

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

22:18 James Lembke, Pierre-Louis Roman, and Patrick Eugster

LD_PRELOAD Direct-FUSE DEFUSE FUSE FUSE direct I/O

N
o
r
m
a
l
i
z
e
d
t
h
r
o
u
g
h
p
u
t

0.0

0.2

0.4

0.6

0.8

1.0

ext4 jfs fat tmpfs

(a) Read — small file workload

N
o
r
m
a
l
i
z
e
d
t
h
r
o
u
g
h
p
u
t

0.0

0.2

0.4

0.6

0.8

1.0

ext4 jfs fat tmpfs

(b) Write — small file workload

0.0

0.2

0.4

0.6

0.8

1.0

ext4 jfs fat tmpfs

(c) Read — large file workload

0.0

0.2

0.4

0.6

0.8

1.0

ext4 jfs fat tmpfs

(d) Write — large file workload

0.0

0.2

0.4

0.6

0.8

1.0

ext4 jfs fat tmpfs

(e) Read — mixed file workload

0.0

0.2

0.4

0.6

0.8

1.0

ext4 jfs fat tmpfs

(f) Write — mixed file workload

Fig. 7. I/O throughputs of DEFUSE vs an LD_PRELOAD library, Direct-FUSE, and FUSE with and without
direct I/O, normalized by the throughput of direct mounted kernel FS (higher is better). (a), (c) and (e) depict
read throughput for small, large and mixed file sizes, (b), (d) and (f) depict their respective write counterparts.

also slower than ext4 with 130 kB/s write and 6 MB/s read throughputs, (d) tmpfs I/O operations

being completely in memory, achieved the best throughput with 20.4 MB/s for both write and

read. However, given the large number of system calls needed to process all the files, achievable

throughput is far below the capability of the storage media.

Large files. We evaluated the FSs for large file accesses where the fewest quantity of system calls

were needed. A single 128 MB file was created. This benchmark highlights the amortization of wait

context switch cost for FUSE’s system calls.

The results in Figure 7c and Figure 7d show that DEFUSE reached close to optimal throughputs:

between 85% and 93% that of direct mount for reads, and between 92% and 100% for writes.

LD_PRELOAD’s throughput was almost always above 98% (except for reads on FAT) and, as with

small files, Direct-FUSE closely followed. While FUSE performance improved with large files, it

remained largely below that of the other interfaces and at best only reached 60% for tmpfs. Write

performance, on the other hand, almost reached that of direct mount when used with direct I/O for

FAT. Since only one file is accessed, the number of system calls serviced by the kernel and FUSE

server is small and the total operation time is more dependent on the I/O time to the storage media.

The actual I/O throughput for direct mount is very similar for most FSs, achieving ≈200 MB/s

write and ≈900 MB/s read throughput. The exception is tmpfs which achieved 2.3 GB/s write and

read throughput due to I/O operations being completely in memory.

Mixed sized files. We evaluated the FSs using mixed sized files to simulate a more diverse

workload. The benchmark created 2,048 files linearly distributed in sizes from 64 B to 128 kB.

Figure 7e and Figure 7f show close results in all cases for all interfaces except FUSE that performs

significantly worse. As with previous benchmarks, direct I/O slightly improves FUSE, but is still

15% slower than DEFUSE at best (writes to JFS).

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

DEFUSE: An Interface for Fast and Correct User Space File System Access 22:19

Direct mount LD_PRELOAD Direct-FUSE

DEFUSE FUSE FUSE direct I/O

N
u
m
b
e
r
o
f
w
a
i
t
s

1

10
1

102

10
3

104

10
5

read write

(a) Small file workload

1

10
1

102

10
3

104

10
5

read write

(b) Large file workload

1

10
1

102

10
3

104

10
5

read write

(c) Mixed file workload

Fig. 8. Number of waits reported by the command time %w for the tmpfs workloads of Figure 7 (log scale,
smaller is better). Using tmpfs as backing store removes the I/O overhead inherent to physical media. For (a),
thousands of system calls are made but these process-blocking system calls do not always induce a wait.

6.1.3 Wait context switch results. Our evaluation with small, large, and mixed file workloads show

that the throughput of DEFUSE was significantly higher than FUSE and was often close to that

of LD_PRELOAD. We then evaluated the total number of waits needed to perform each of these

benchmarks to confirm that the reduced throughput is directly related to context switching and not

to any other bottleneck in FUSE. We thus used the Linux time command which has the ability to

retrieve statistics including the number of context switches performed for both time slice expiration

and the purpose of waiting for I/O operations to complete (using time %w [52]). Here, we are only

concerned about the subset of context switches made by the process for the latter case, i.e., waits.

We ran the benchmarks on tmpfs to focus on the context switches caused by the FS interface since

I/O requests to access a physical device induce extra context switches.

The results shown in Figure 8 (y-axes use a log scale) confirm that the overhead of FUSE is

caused in a large part by waits. Direct mount, the LD_PRELOAD library, Direct-FUSE and DEFUSE

require ≈9 waits for all workloads while FUSE requires orders of magnitude more. For the small file

workload (cf. Figure 8a), FUSE requires ≈16,000 waits (i.e., permission lookup + open + read/write
+ close for each of the 4,096 files) and using direct I/O does not reduce this number. For the large

file workload (cf. Figure 8b), we note that the FUSE kernel driver splits large writes into multiple

requests sent to the FUSE server in user space, each causing a wait. Even with a single (large) file,

FUSE requires ≈1,000 waits for a read and ≈33,000 for a write. Direct I/O reduces these considerably,

from ≈33,000 down to ≈1,000 for writes, which is still 100× higher than DEFUSE. The mixed file

workload (cf. Figure 8c) shows an even larger difference in the required waits: ≈9 for DEFUSE but

≈41,000 for FUSE. While there are half as many files created in this workload compared to the

small file one (2,048 vs 4,096), files are larger on average thus forcing the FUSE server to split write

requests into smaller ones. As with the large file workload, the number of waits is reduced using

direct I/O, down to ≈10,000, which is still 1,000× more than DEFUSE.

6.1.4 Application runtime. In addition to synthetic workloads generated by IOzone, we also evalu-

ated DEFUSE’s impact on three practical (throughput-intensive) applications using the sources of

the Linux kernel v4.15 as data set. First, we decompressed the 160 MB archive comprised of 67,000

files into an ext4 backed FS using the tar command.

We then backed up the decompressed small files from the ext4 backed FS to a JFS backed FS

using rsync. We finally compiled the source files using gcc on the ext4 backed FS.

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

22:20 James Lembke, Pierre-Louis Roman, and Patrick Eugster

Direct mount DEFUSE FUSE

R
u
n
t
i
m
e
(
s
e
c
o
r
m
i
n
)

0.0 s

0.5 s

1.0 s

1.5 s

2.0 s

2.5 s

(a) Decompression

0.0 s

0.5 s

1.0 s

1.5 s

2.0 s

2.5 s

3.0 s

3.5 s

(b) Backup

0 m
50 m

100 m
150 m
200 m
250 m
300 m
350 m
400 m

(c) Kernel compile

Fig. 9. Runtimes of three throughput-intensive applications using the source files of the Linux kernel v4.15
(lower is better). (a) depicts the time to decompress the 160 MB archive of 67,000 files. (b) depicts the time to
back up the decompressed files using rsync. (c) depicts the time to compile the kernel using gcc.

Direct mount DEFUSE FUSE

R
u
n
t
i
m
e
(
s
e
c
)

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

(a) Create file
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(b) File access
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(c) Change mode
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

(d) Unlink file

Fig. 10. Runtimes of four benchmarks accessing the metadata of 10,000 files (lower is better). (a) depicts the
time to create the files. (b) depicts the time to run the access system call on the files. (c) depicts the time to
change the files’ mode with chmod. (d) depicts the time to remove (unlink) the files.

Figure 9a shows the decompression time, Figure 9b the backup time, and Figure 9c the kernel

compilation time. For decompression, DEFUSE achieved almost identical runtime to the direct

mount while FUSE required as much as 4× the amount of time to finish. Using direct I/O only

marginally improved FUSE performance. Similarly, DEFUSE ran at near direct kernel mount speeds

when backing up, while FUSE and FUSE with direct I/O were significantly slower, taking 3× longer.

For compilation, where DEFUSE and FUSE perform the closest, DEFUSE took 1.23× longer than

direct mount and FUSE yet 1.41× longer than DEFUSE, on average. This evaluation showed the

practical advantages of DEFUSE over FUSE as a user space FS interface for everyday tasks.

6.1.5 Metadata operations. To complete our single-machine evaluation, we ran benchmarks using

various system calls that read, write, and/or modify the metadata of 10,000 files. Unlike the previous

benchmarks, these ones are not throughput-intensive but do perform a lot of small I/O operations.

Figure 10a shows the time to create 10,000 files, Figure 10b shows the time to run the access
system call on all 10,000 files, Figure 10c the time to change the mode of all 10,000 files using the

chmod system call, and Figure 10d the time to remove (unlink) the 10,000 files. Due to the relatively

short amount of time to perform the metadata operation compared to the overhead of the FS access

method, FUSE performs significantly worse than direct mount and DEFUSE. Even at its best, for

unlink, FUSE requires 4.3× longer than direct mount compared to DEFUSE which takes 1.3× longer

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

DEFUSE: An Interface for Fast and Correct User Space File System Access 22:21

DEFUSE FUSE

0
2
4
6
8

10
12
14
16
18
20

ge
n

lo
ad

q0
1

q0
2

q0
3

q0
4

q0
5

q0
6

q0
7

q0
8

q0
9

q1
0

q1
1

q1
2

q1
3

q1
4

q1
5

q1
6

q1
7

q1
8

q1
9

q2
0

q2
1

q2
2

q2
3

q2
4

q2
5

q2
6

q2
7

q2
8

q2
9

q3
0

N
or

m
al

iz
ed

 r
un

ti
m

e

Fig. 11. Runtime of TPCx-BB queries normalized by the runtime of direct mount (lower is better). gen is the
time to generate the benchmark data, load the time to load that data into the meta store, qx the time to run
query x . DEFUSE is between 1.6× (gen) and 10× (q02) faster than FUSE, and 3.7× on average.

than direct mount; while at its worst FUSE requires 12× longer than direct mount for the file access

benchmark where DEFUSE requires 1.6× longer.

6.2 Benefits for Distributed Systems
We also evaluated a diverse set of distributed cloud workloads to compare DEFUSE, FUSE, and

direct kernel mount. We used Apache Spark [10] v2.4.0 on a cluster of 5 machines with identical

hardware setups as described in Section 6.1.1. These distributed workloads show the local benefits

of DEFUSE have important global impact on distributed applications despite network latency.

TPCx-BB express benchmark. In our first distributed evaluation, we ran the TPCx-BB benchmark

suite [91]. The benchmark consists of 30 different SQL queries in the context of retail stores. Using

the Spark SQL [11] implementation provided by the Transaction Processing Performance Council,

we used a data scaling factor of 100 and used direct mount, DEFUSE, and FUSE as the interfaces of

the HDFS backing store. The runtimes shown in Figure 11 are a normalized ratio of HDFS backed

by a direct mount ext4 FS. The entries for gen and load show the time to generate benchmark data

and to load it into the metastore, respectively. Each qx shows the time to run query x . Queries q22
and q30 show the best and worst performance respectively for DEFUSE, while queries q27 and
q02 show the same for FUSE. While the results greatly vary, DEFUSE always outperforms FUSE;

DEFUSE is between 1.6× (gen) and 10× (q02) faster with a 3.7× gain on average for a query.

Word count. To further evaluate DEFUSE against FUSE and a direct mounted FS, we ran a Spark

word count workload using 300 GB of Wikipedia data. While Spark data inputs and results may

be stored locally or in a remote file system, intermediate results from the map and reduce tasks

are stored locally on compute nodes. Using the Purdue University MapReduce benchmarks suite

(PUMA) [5] we show that the overall runtime of a Spark application can be affected by the FS

interface of this local storage. Figure 12a shows that FUSE significantly increases the completion

time of the word count job, even when used only for Spark local storage, with a 2× difference

compared to DEFUSE or direct mount. Spark uses memory mapped I/O for reading and writing to

local storage so it is not possible to evaluate FUSE with direct I/O enabled.

Machine learning. To evaluatemachine learning relatedworkloads, we ran both a linear regression

in Spark with a 720 million observation data set (Figure 12b) and k-means with a 1.4 billion

observation data set (Figure 12c) using the same Spark configuration used for word count. As with

Spark word count, using FUSE seriously impacts the total workload time, requiring 1.75× longer for

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

22:22 James Lembke, Pierre-Louis Roman, and Patrick Eugster

Direct mount DEFUSE FUSE

R
u
n
t
i
m
e
(
s
e
c
o
r
m
i
n
)

0 m

20 m

40 m

60 m

80 m

100 m

120 m

(a) Word count

0 s
20 s
40 s
60 s
80 s

100 s
120 s
140 s
160 s
180 s
200 s

(b) Linear regression

0 s
50 s

100 s
150 s
200 s
250 s
300 s
350 s
400 s

(c) k-means clustering

0 m
20 m
40 m
60 m
80 m

100 m
120 m
140 m
160 m

(d) Hadoop TestDFSIO

Fig. 12. Runtime of typical cloud workloads (lower is better). (a) depicts the time to run a Spark word count
job using 300 GB of Wikipedia data. (b) depicts the time to run a linear regression of 720 million observation
data set. (c) depicts the time to run k-means clustering of 200 clusters of a 1.4 billion observation data set. (d)
depicts the time to run the TestDFSIO benchmark writing 300 GB of data. DEFUSE is between 1.27× (d) and
1.94× (a) faster than FUSE for cloud workloads, and on par with direct mount for TestDFSIO (d).

0

5

10

15

20

25

0
500

1000
1500

2000
2500

3000
3500

4000

O
ve

rh
ea

d
(μ

s)

Inherited file descriptors

Experimental results
Linear regression

Fig. 13. FD stashing overhead with DEFUSE for
up to 4,000 inherited FDs along with the trend
line. Overhead is negligible even for 4,000 FDs.

Direct mount DEFUSE FUSE

R
u
n
t
i
m
e
(
s
e
c
)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

read write

Fig. 14. Runtime of 1.25 M reads and writes on a file
mapped with the user space paging of DEFUSE, direct
mount FS and FUSE. DEFUSE and FUSE perform equally
for reads while writes are 1.8× faster for DEFUSE.

the linear regression workload to complete compared to DEFUSE or direct mount. FUSE’s overhead

for k-means is lower but is still significant as it takes 1.5× longer than DEFUSE to complete.

HDFS. To conclude our distributed evaluations, we ran the TestDFSIO benchmark to evaluate

how HDFS is affected by FS interfaces. The benchmark recorded the runtime of writing a single

300 GB file, plotted in Figure 12d. HDFS uses in-memory data block caching, and performance is

affected more by the speed of main memory than by the speed of the FS. However, even in this

case, FUSE takes 1.23× longer to complete compared to direct mount or DEFUSE.

6.3 Implementation Microbenchmarks
Last but not least we perform several microbenchmarks to tease apart the savings of DEFUSE.

Overhead of FD stashing. Recall that FD stashing saves and restores the internal FD map used

by DEFUSE which adds additional overhead to the exec system call. In order to determine the

overhead, we created a benchmark where a parent process opens files within DEFUSE and calls

fork and exec to create a child process, then measured and reported in Figure 13 the time for

FD stashing to save and restore FDs in the child process. Intuitively, the FD stashing overhead is

directly related to the number of inherited FDs as the FD stashing process sequentially saves and

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

DEFUSE: An Interface for Fast and Correct User Space File System Access 22:23

LD_PRELOAD DEFUSE FUSE FUSE direct I/O
R
e
a
d
t
h
r
o
u
g
h
p
u
t
(
M
B
/
s
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a) Small file workload
0

10
20
30
40
50
60
70
80
90

(b) Mixed file workload
0

20

40

60

80

100

120

140

(c) Large file workload

Fig. 15. Read throughput of an LD_PRELOAD library, DEFUSE and FUSE when used with AVFS for small, large
and mixed sized file workloads. DEFUSE always performs better than FUSE, with or without direct I/O, and
particularly when handling a lot of small files as it reaches much closer to LD_PRELOAD’s performance.

restores all FDs. Running a linear regression on the data results in an FD stashing overhead of 4 ns

per inherited FD with a base overhead of 3.7 µs to intercept the system calls. Overall, the overhead

is virtually nonexistent considering FD stashing is only required once per child process and the

typical soft limit for open FDs on Ubuntu Linux is 1,024 (with a total overhead of 8.9 µs).

Overhead of user space paging. To evaluate the performance of DEFUSE user space paging, we

evaluated the performance of a file mapped with DEFUSE against a direct mounted FS and FUSE.

The comparison does not include FUSE with direct I/O since it is not possible to use it with a

memory mapped file — direct I/O bypasses the kernel page cache. We created a benchmark where a

128 MB file is mapped using the mmap system call and we then measured and reported in Figure 14

the runtime of 1.25 million random reads and writes over the file’s address space. Read operations

are significantly slower using either user space access mechanism, DEFUSE or FUSE, than when

using direct mount since they both require a transfer of control between kernel and user space for

each page fault handled. However, there is no significant difference between the read runtimes of

DEFUSE and FUSE. Write operations are 1.8× faster with DEFUSE than with FUSE but 7.5% slower

than with direct mount, on average.

AVFS. To further compare LD_PRELOAD, DEFUSE, and FUSE with and without direct I/O enabled,

we ran a series of tests on a user space FS implementation that did not have a corresponding kernel

driver. Benchmark processes were run for the same small, large, and mixed sized file workloads (cf.

Section 6.1.1) using both DEFUSE and the FUSE implementation for AVFS [12] (cf. Section 5.2), a user

space only FS that allows direct access to compressed files bypassing the need for a decompression

tool. A gzip compressed tar file was created containing the files of each workload. Figure 15 shows

DEFUSE achieved higher read throughput for small files, almost double that of FUSE. Both large

and mixed file workloads show less gains, but still clear improvements over FUSE.

7 RELATEDWORK
We discuss work related to user space FS interfaces and performance improvements to FUSE.

7.1 Related to User Space Libraries
MPI-IO [55] is developed as an extension to the Message Passing Interface (MPI) with the purpose

of improving the performance of collective I/O within a parallel computing system. ROMIO [85]

is a high performance user space implementation of MPI-IO. Its use of an abstract interface [84]

allows multiple backend FSs to be connected to the library allowing parallel applications written to

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

22:24 James Lembke, Pierre-Louis Roman, and Patrick Eugster

the MPI standard to access the underlying FSs without specific knowledge of FS API. Operating

completely in user space, this solution provides the benefits of FS access speed, while the abstract

interface allows for FS-agnostic access. However, it is intended for use with parallel computing

systems and applications must be coded specifically to the MPI-IO standard. Applications using

POSIX system calls would not be able to access the library.

Like MPI-IO, libsysio [89] is another library initially developed for managing access to FSs

for high performance computing. However, as with other directly linked user space libraries, it is

affected by the FD heritage dilemma nor does it provide user space paging.

ADAPT [94] provides an auxiliary storage data path to improve performance and flexibility while

being compatible with existing storage models. Data is associated with one or more tags describing

the relationships between data and then uses a single-level store provided via a key-value system

for data access. It is implemented primarily as user space library allowing applications aware of its

API access to its capabilities, however also offers a FUSE implementation for legacy applications.

7.2 Related to FUSE
Numerous solutions have improved FUSE but only few tackle the basic interface overhead largely

due to wait context switch latency, without providing POSIX compliance.

Ishiguro et al. [40] propose a method to reduce memory copies and wait context switches when

FUSE is used with a remote FS. Their direct device access prevents unneeded calls from the FUSE

kernel driver to user space when the backing FS contains a kernel driver. However, this solution is

not intended for FSs whose I/O request handling logic resides in user space.

ExtFUSE [16] proposes to reduce the number of FUSE requests between kernel space and user

space using extended Berkeley packet filters (eBPF) [50]. The eBPF interface allows for user space

programs to run in kernel space with significant restrictions. While ExtFUSE can reduce the number

of wait context switches, it is isolated to a subset of I/O operations.

Direct-FUSE [100] provides an abstract interface for user space FS libraries within libsysio [89].
As mentioned in Section 6.1.1, it does not address the FD heritage dilemma, nor does provide an

interface for user space paging, and therefore does not provide all the guarantees required by

POSIX.

WrapFS [97] provides an efficient wrapper of a file system mount onto another mounted location.

However it does not provide the bypassed FD lookup behavior needed to reduce the time to service

an open system call.

Stacked FSs [70] promise ease in deployment of incremental changes to existing FSs. File System

Translator (FiST) [98] is a tool aiming to ease creation of stacked FSs by generating the necessary

kernel drivers for FS drivers written in a high-level language. However, both stacked FSs and FiST are

limited to kernel space FS drivers. Narayan et. al. [60] extend FiST for user space implementations

but in a way dependent on FUSE, thus suffering from wait context switch overhead.

Ganesha network file system (NFS) [24] is a user space NFS client supporting the same protocols

as kernel space implementation as in other Unix-like OSs. Yet running in user space allows Ganesha

NFS to redirect I/O requests directly to user space FS libraries using an FS abstraction layer [62]

similar to FUSE’s. While increasing flexibility for NFS exports, it does not improve performance of

interaction between kernel and user spaces; the socket interface used by the RPC protocol of NFS

has similar performance penalties as the FUSE interface used to communicate between kernel and

user space.

Steere et al. [78] propose a caching mechanism running in user space as an optimization to the

Coda distributed FS [72]. While the cache improves performance for I/O operations, the system

still requires a transfer of control from kernel to user space for each directory tree level during

lookup. Even with the existence of a user space cache, workloads using input data sets requiring

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

DEFUSE: An Interface for Fast and Correct User Space File System Access 22:25

access to potentially millions of small files [17, 21] would take a large number of control transfers

to fill the cache, yielding performance comparable to FUSE.

Patlasov [65] sketches a set of performance optimizations for FUSE aiming at parellelization

thanks to, e.g., multi-threading, direct I/O, and caching. However, wait context switches are not

reduced, the optimizations are only validated using specialized parallel workloads on specialized

iSCSI SAN storage rather than on common FUSE, and no codebase is public.

Re-FUSE [79] (which is not ReFUSE [44]) is an extension to FUSE to make the user space FUSE

server fault-tolerant. A Re-FUSE server crash is automatically detected and a restart initiated while

applications continue to run without knowledge of the failure. FUSE performance is not improved.

7.3 Related to LD_PRELOAD

OrangeFS Direct Interface [64] uses an LD_PRELOAD implementation, but it experiences the FD

heritage dilemma. Furthermore, its implementation is tightly coupled with PVFS [71] thus it is not

practical as a general purpose FS.

Goanna [77] is a framework for rapid FS implementation in user space based on the ptrace
kernel interface. ptrace allows for a process to monitor for, and intercept system calls of, other

processes. Debuggers such as gdb [32] use this interface to set breakpoints in executing processes.

When a system call from an FS is intercepted, Goanna redirects the operation to a user space FS

library as appropriate. This has a similar effect to an LD_PRELOAD library without losing internal

mappings when a parent creates a child process with open FDs. However, using ptrace requires
similar wait context switches between kernel and user space as processes FUSE. Goanna mitigates

these by using a modified ptrace implementation, however still leaving a large number of wait

context switches. Also, for Goanna to monitor all processes, it must run with superuser privileges,

which is a security risk even if it runs in user space.

SplitFS [43] is an FS for persistent memory that is uses an LD_PRELOAD implementation to

intercept FS related system calls. It contains an implementation similar to FD stashing however

does not improve the performance of open as DEFUSE does though bypassed FD lookup. For

applications that manipulate a large number of small files, the overhead for open can dwarf the

overhead for doing the I/O operations themselves. Such is the case for high performance computing

workloads, some of which create millions of files below 64 kb. In addition, SplitFS is specialized for

use with persistent memory and is not a general purpose user space FS interface.

Bypass and Multiple Bypass [83] use LD_PRELOAD to ease the writing of distributed applications.

Calls intercepted by an LD_PRELOAD library may be executed locally or redirected to a remote

machine, e.g., to read data on a remote FS, depending on the policies defined in Bypass. This scheme

enables applications to split their execution on multiple machines with low programming effort.

7.4 Related to User Space Paging
FluidMem [20] is a library designed to provide memory resource disaggregation by creating a

system for memory as a service. It uses the userfaultfd call to manage page faults, however its

infrastructure acts as a service within a hypervisor providing access to remote memory for a client

virtual machine by accessing memory pages on a remote system.

UMap [66] is a library to provide application-driven optimizations for page management. It

uses userfaultfd to control access to a page map providing applications fine-grained control

of page management (e.g., pre-fetching and controlled flushing of pages), however it is not an

application-agnostic interface and requires client applications to make explicit calls to set the

policies for page management.

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

22:26 James Lembke, Pierre-Louis Roman, and Patrick Eugster

8 CONCLUSIONS
FSs implemented in user space have the advantage of permission isolation, access to user space

libraries, and ease of prototyping using a diverse set of programming languages. While deployable

interfaces for user space FSs exist, they suffer from significant performance penalties (e.g., FUSE)

and/or inconsistent behaviors FDs (e.g., LD_PRELOAD-loaded library). Research attempting to im-

prove access performance for user space FSs is often workload-specific (e.g., MPI-IO) or does not

address inconsistency issues (e.g., Direct-FUSE).

DEFUSE is a generic interface for user space FSs that enables FS access using existing POSIX

system calls with higher access speed than FUSE, up to 2× faster for persistent storage media and

as high as 10× faster for memory-based operations in our evaluation. At the same time, DEFUSE

improves on existing user space FS interfaces by maintaining consistency of FDs passed between

parent and child processes. In future work, we plan to further improve performance of DEFUSE

and provide a wrapper interface to streamline porting existing FS implementations from FUSE into

DEFUSE such that existing FUSE implementations can be used with DEFUSE with no modification.

REFERENCES
[1] Personal conversation with David Bonnie, storage tech lead at Los Alamos National Laboratory and co-designer of

OrangeFS/PVFS2, in reference to work on MarFS 11/15/2016.

[2] Access DBFS using local file APIs. https://docs.databricks.com/user-guide/dbfs-databricks-file-system.html#access-

dbfs-using-local-file-apis.

[3] Access DBFS with the Databricks CLI. https://docs.databricks.com/user-guide/dbfs-databricks-file-system.html#

access-dbfs-with-the-databricks-cli.

[4] AccessFS: Permission Filesystem for Linux. http://www.olafdietsche.de/2002/11/07/accessfs-permission-filesystem-

linux/.

[5] Ahmad, F., Lee, S., Thottethodi, M., and Vijaykumar, T. PUMA: Purdue University Benchmark Suite, 2012.

[6] Alluxio-FUSE. https://github.com/Alluxio/alluxio/tree/master/integration/fuse.

[7] Amazon S3. https://aws.amazon.com/s3/.

[8] Amazon S3 FUSE. https://github.com/s3fs-fuse/s3fs-fuse.

[9] Apache Hadoop 2.4.1 - File System Shell Guide. https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-

common/FileSystemShell.html#Overview.

[10] Apache Spark. http://spark.apache.org/.

[11] Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., Meng, X., Kaftan, T., Franklin, M. J., Ghodsi,

A., et al. Spark SQL: Relational Data Processing in Spark. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’15) (2015), pp. 1383–1394.

[12] AVFS - A Virtual File System. http://avf.sourceforge.net/.

[13] Amazon Web Services SDK for C++. https://aws.amazon.com/sdk-for-cpp/.

[14] Behrens, D., Serafini, M., Junqeira, F. P., Arnautov, S., and Fetzer, C. Scalable Error Isolation for Distributed

Systems. In 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) (2015), pp. 605–620.
[15] Bent, J., Gibson, G., Grider, G., McClelland, B., Nowoczynski, P., Nunez, J., Polte, M., and Wingate, M. PLFS:

A Checkpoint Filesystem for Parallel Applications. In High Performance Computing, Networking, Storage and Analysis
(SC ’09) (2009), pp. 1–12.

[16] Bijlani, A., and Ramachandran, U. Extension Framework for File Systems in User Space. In 2019 USENIX Annual
Technical Conference (ATC ’19) (2019), pp. 121–134.

[17] Bonnie, D. J., and Torres, A. G. Small File Aggregation with PLFS. Tech. rep., Los Alamos National Laboratory

(LANL), 2013.

[18] Borthakur, D., et al. HDFS architecture guide. https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html, 2008.

[19] Burihabwa, D., Felber, P., Mercier, H., and Schiavoni, V. SGX-FS: Hardening a File System in User-Space with

Intel SGX. In 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom ’18) (2018),
pp. 67–72.

[20] Caldwell, B., Goodarzy, S., Ha, S., Han, R., Keller, E., Rozner, E., and Im, Y. FluidMem: Full, Flexible, and Fast

Memory Disaggregation for the Cloud. In Proceedings of the 2020 IEEE 40th International Conference on Distributed
Computing Systems (ICDCS’20) (2020), pp. 665–677.

[21] Carns, P., Lang, S., Ross, R., Vilayannur, M., Kunkel, J., and Ludwig, T. Small-File Access in Parallel File Systems.

In IEEE International Parallel & Distributed Processing Symposium (IPDPS ’09) (2009), pp. 1–11.

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

https://docs.databricks.com/user-guide/dbfs-databricks-file-system.html#access-dbfs-using-local-file-apis
https://docs.databricks.com/user-guide/dbfs-databricks-file-system.html#access-dbfs-using-local-file-apis
https://docs.databricks.com/user-guide/dbfs-databricks-file-system.html#access-dbfs-with-the-databricks-cli
https://docs.databricks.com/user-guide/dbfs-databricks-file-system.html#access-dbfs-with-the-databricks-cli
http://www.olafdietsche.de/2002/11/07/accessfs-permission-filesystem-linux/
http://www.olafdietsche.de/2002/11/07/accessfs-permission-filesystem-linux/
https://github.com/Alluxio/alluxio/tree/master/integration/fuse
https://aws.amazon.com/s3/
https://github.com/s3fs-fuse/s3fs-fuse
https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-common/FileSystemShell.html#Overview
https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-common/FileSystemShell.html#Overview
http://spark.apache.org/
http://avf.sourceforge.net/
https://aws.amazon.com/sdk-for-cpp/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

DEFUSE: An Interface for Fast and Correct User Space File System Access 22:27

[22] Corbett, P., Feitelson, D., Fineberg, S., Hsu, Y., Nitzberg, B., Prost, J.-P., Snir, M., Traversat, B., and Wong, P.

Overview of the MPI-IO Parallel I/O Interface. In Workshop on Input/Output in Parallel and Distributed Systems (IPPS
’95) (1995), pp. 1–15.

[23] Databricks File System. https://docs.databricks.com/user-guide/dbfs-databricks-file-system.html/.

[24] Deniel, P., Leibovici, T., and Lafoucrière, J.-C. GANESHA, A Multi-Usage with Large Cache NFSv4 Server. In

Linux Symposium (2007), p. 113.

[25] Emacs Hooks. https://www.gnu.org/software/emacs/manual/html_node/emacs/Hooks.html.

[26] Essertel, G., Tahboub, R., Decker, J., Brown, K., Olukotun, K., and Rompf, T. Flare: Optimizing Apache Spark

with Native Compilation for Scale-Up Architectures and Medium-Size Data. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’18) (2018), pp. 799–815.

[27] Ext4 (and Ext2/Ext3) Wiki. https://ext4.wiki.kernel.org/.

[28] FAT Filesystem Library in R6RS Scheme. https://gitlab.com/weinholt/fs-fatfs.

[29] FUSE Example fusexmp. https://github.com/fuse4x/fuse/blob/master/example/fusexmp.c.

[30] FUSE for Google Cloud Storage. https://github.com/GoogleCloudPlatform/gcsfuse/.

[31] FUSE High Level Interface. https://github.com/libfuse/libfuse/blob/master/include/fuse.h.

[32] GDB: The GNU Project Debugger. https://www.gnu.org/software/gdb/.

[33] GlusterFS - A Scale-Out Network-Attached Storage File System. https://www.gluster.org/.

[34] Google Cloud Storage. https://cloud.google.com/storage/.

[35] gsutil tool. https://cloud.google.com/storage/docs/gsutil.

[36] Hupfeld, F., Cortes, T., Kolbeck, B., Stender, J., Focht, E., Hess, M., Malo, J., Marti, J., and Cesario, E. XtreemFS:

A Case for Object-Based Storage in Grid Data Management. In 3rd VLDB Workshop on Data Management in Grids,
co-located with VLDB (2007).

[37] IBM Spectrum Scale - Formerly General Parallel File System (GPFS). https://www.ibm.com/us-en/marketplace/scale-

out-file-and-object-storage.

[38] Inman, J. T., Vining, W. F., Ransom, G. W., and Grider, G. A. MarFS, a Near-POSIX Interface to Cloud Objects. The
USENIX Magazine (Spring 2017).

[39] IOzone Filesystem Benchmark. http://iozone.org/.

[40] Ishiguro, S., Murakami, J., Oyama, Y., and Tatebe, O. Optimizing Local File Accesses for FUSE-based Distributed

Storage. In High Performance Computing, Networking, Storage and Analysis (SC ’12) (2012), pp. 760–765.
[41] Jannen, W., Yuan, J., Zhan, Y., Akshintala, A., Esmet, J., Jiao, Y., Mittal, A., Pandey, P., Reddy, P., Walsh, L.,

et al. BetrFS: A Right-Optimized Write-Optimized File System. In 13rd USENIX Conference on File and Storage
Technologies (FAST ’15) (2015), pp. 301–315.

[42] Journaled File System Technology for Linux. http://jfs.sourceforge.net/.

[43] Kadekodi, R., Lee, S. K., Kashyap, S., Kim, T., Kolli, A., and Chidambaram, V. SplitFS: Reducing Software Overhead

in File Systems for Persistent Memory. In Proceedings of the 27th ACM Symposium on Operating Systems Principles
(SOSP ’19) (2019), pp. 494–508.

[44] Kantee, A., and Crooks, A. ReFUSE: Userspace FUSE Reimplementation using PUFFS. In 6th European BSD
Conference (EuroBSDCon ’07) (2007).

[45] Leslie, B., Chubb, P., Fitzroy-Dale, N., Götz, S., Gray, C., Macpherson, L., Potts, D., Shen, Y.-T., Elphinstone, K.,

and Heiser, G. User-Level Device Drivers: Achieved Performance. Journal of Computer Science and Technology 20, 5
(Sep 2005), 654–664.

[46] Li, H. Alluxio: A Virtual Distributed File System. PhD thesis, UC Berkeley, 2018.

[47] C API libhdfs. https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/LibHdfs.html.

[48] libfuse - Filesystem in Userspace. https://github.com/libfuse/libfuse.

[49] libfuse - SSHFS implementation. https://github.com/libfuse/sshfs.

[50] Linux Manual - bpf - Perform a Command on an Extended BPF Map or Program. http://man7.org/linux/man-

pages/man2/bpf.2.html.

[51] Linux Manual - Overview, Conventions, and Miscellaneous: libc. http://man7.org/linux/man-pages/man7/libc.7.html.

[52] Linux User Manual - Time Command, Option %w for Waits. https://linux.die.net/man/1/time.

[53] Linux Virtual File System. http://www.tldp.org/LDP/tlk/fs/filesystem.html.

[54] Lustre Parallel File System. http://lustre.org/.

[55] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version 4.0, June 2021.
[56] Microsoft Corporation. Microsoft Extensible Firmware Initiative FAT32 File System Specification. Tech. rep.,

Microsoft Corporation, 2000.

[57] Moose File System (MooseFS). https://moosefs.com/index.html.

[58] Mountable HDFS. https://wiki.apache.org/hadoop/MountableHDFS.

[59] Muniswamy-Reddy, K.-K., Wright, C. P., Himmer, A., and Zadok, E. A Versatile and User-Oriented Versioning File

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

https://docs.databricks.com/user-guide/dbfs-databricks-file-system.html/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Hooks.html
https://ext4.wiki.kernel.org/
https://gitlab.com/weinholt/fs-fatfs
https://github.com/fuse4x/fuse/blob/master/example/fusexmp.c
https://github.com/GoogleCloudPlatform/gcsfuse/
https://github.com/libfuse/libfuse/blob/master/include/fuse.h
https://www.gnu.org/software/gdb/
https://www.gluster.org/
https://cloud.google.com/storage/
https://cloud.google.com/storage/docs/gsutil
https://www.ibm.com/us-en/marketplace/scale-out-file-and-object-storage
https://www.ibm.com/us-en/marketplace/scale-out-file-and-object-storage
http://iozone.org/
http://jfs.sourceforge.net/
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/LibHdfs.html
https://github.com/libfuse/libfuse
https://github.com/libfuse/sshfs
http://man7.org/linux/man-pages/man2/bpf.2.html
http://man7.org/linux/man-pages/man2/bpf.2.html
http://man7.org/linux/man-pages/man7/libc.7.html
https://linux.die.net/man/1/time
http://www.tldp.org/LDP/tlk/fs/filesystem.html
http://lustre.org/
https://moosefs.com/index.html
https://wiki.apache.org/hadoop/MountableHDFS

22:28 James Lembke, Pierre-Louis Roman, and Patrick Eugster

System. In 3rd USENIX Conference on File and Storage Technologies (FAST ’04) (2004), vol. 4, pp. 115–128.
[60] Narayan, S., Mehta, R. K., and Chandy, J. A. User Space Storage System Stack Modules with File Level Control. In

Proceedings of the 12th Annual Linux Symposium in Ottawa (2010), pp. 189–196.
[61] Native HDFS FUSE. https://github.com/remis-thoughts/native-hdfs-fuse.

[62] NFS Ganesha - File System Abstraction Layer (FSAL). https://github.com/nfs-ganesha/nfs-ganesha/wiki/Fsalsupport.

[63] ObjectiveFS. https://objectivefs.com/.

[64] OrangeFS Direct Interface. http://docs.orangefs.com/v_2_9/Direct_Interface.htm.

[65] Patlasov, M. Optimizing FUSE for Cloud Storage. In Linux Vault (2015).
[66] Peng, I., McFadden, M., Green, E., Iwabuchi, K., Wu, K., Li, D., Pearce, R., and Gokhale, M. Umap: Enabling

application-driven optimizations for page management. In 2019 IEEE/ACM Workshop on Memory Centric High
Performance Computing (MCHPC ’19) (2019), IEEE, pp. 71–78.

[67] Pillai, M., Gowdappa, R., and Henk, C. Experiences with Fuse in the Real World. In 2019 Linux Storage and
Filesystems Conference (VAULT ’19) (Feb. 2019).

[68] Rajachandrasekar, R., Moody, A., Mohror, K., and Panda, D. K. A 1 PB/s File System to Checkpoint Three

Million MPI Tasks. In Proceedings of the 22nd International Symposium on High-Performance Parallel and Distributed
Computing (HPDC ’13) (2013), pp. 143–154.

[69] React Hooks. https://reactjs.org/docs/hooks-intro.html.

[70] Rosenthal, D. S. Evolving the Vnode interface. In USENIX Summer (1990), vol. 99, pp. 107–118.
[71] Ross, R. B., Thakur, R., et al. PVFS: A Parallel File System for Linux Clusters. In The 4th Annual Linux Showcase

and Conference (2000), pp. 391–430.
[72] Satyanarayanan, M., Kistler, J. J., Kumar, P., Okasaki, M. E., Siegel, E. H., and Steere, D. C. Coda: A Highly

Available File System for a Distributed Workstation Environment. IEEE Transactions on Computers 39, 4 (1990),

447–459.

[73] Sharwood, S. Linux literally loses its Lustre – HPC filesystem ditched in new kernel, 2018.

[74] Shvachko, K., Kuang, H., Radia, S., and Chansler, R. The Hadoop Distributed File System. In 26th IEEE Symposium
on Massive Storage Systems and Technologies (MSST ’10) (2010), pp. 1–10.

[75] Solucorp VirtualFS. http://www.solucorp.qc.ca/virtualfs/.

[76] Spark PySpark Daemon. https://github.com/apache/spark/blob/5264164a67df98b73facae207eda12ee133be7d/python/

pyspark/daemon.py.

[77] Spillane, R. P., Wright, C. P., Sivathanu, G., and Zadok, E. Rapid File System Development using ptrace. In

Workshop on Experimental Computer Science, Part of ACM FCRC (2007), p. 22.

[78] Steere, D. C., Kistler, J. J., and Satyanarayanan, M. Efficient User-Level File Cache Management on the Sun

vnode Interface. In USENIX Summer (1990), vol. 99, pp. 325–332.
[79] Sundararaman, S., Visampalli, L., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H. Refuse to Crash with

Re-FUSE. In 6th Conference on Computer Systems (EuroSys ’11) (2011), pp. 77–90.
[80] System-call wrappers for glibc. https://lwn.net/Articles/799331/.

[81] Tahoe-LAFS - Tahoe Least-Authority File Store. https://tahoe-lafs.org/trac/tahoe-lafs/.

[82] Tarasov, V., Gupta, A., Sourav, K., Trehan, S., and Zadok, E. Terra Incognita: On the Practicality of User-Space

File Systems. In 7th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage ’15) (2015).
[83] Thain, D., and Livny, M. Multiple Bypass: Interposition Agents for Distributed Computing. Cluster Computing 4, 1

(2001), 39–47.

[84] Thakur, R., Gropp, W., and Lusk, E. An Abstract-Device Interface for Implementing Portable Parallel-I/O Interfaces.

In 6th Symposium on the Frontiers of Massively Parallel Computing (Frontiers ’96) (1996), pp. 180–187.
[85] Thakur, R., Lusk, E., and Gropp, W. Users Guide for ROMIO: A High-Performance, Portable MPI-IO Implementation.

Tech. rep., Technical Report ANL/MCS-TM-234, Mathematics and Computer Science Division, Argonne National

Laboratory, 1997.

[86] The Linux Kernel - d_splice_alias. https://www.kernel.org/doc/htmldocs/filesystems/API-d-splice-alias.html.

[87] The Linux Kernel - userfaultfd. https://www.kernel.org/doc/html/latest/admin-guide/mm/userfaultfd.html.

[88] The Plastic File System. http://plasticfs.sourceforge.net/.

[89] SYSIO Library. https://libsysio.sourceforge.io/.

[90] tmpfs Documentation. https://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt.

[91] TPCx-BB Specification. https://www.tpc.org/.

[92] User-space page fault handling. https://lwn.net/Articles/550555/.

[93] Vangoor, B. K. R., Agarwal, P., Mathew, M., Ramachandran, A., Sivaraman, S., Tarasov, V., and Zadok, E.

Performance and Resource Utilization of FUSE User-Space File Systems. ACM Transactions on Storage 15, 2 (May

2019).

[94] Wang, W., Meyers, C., Roy, R., Diesburg, S., and Wang, A.-I. A. ADAPT: An auxiliary storage data path toolkit.

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

https://github.com/remis-thoughts/native-hdfs-fuse
https://github.com/nfs-ganesha/nfs-ganesha/wiki/Fsalsupport
https://objectivefs.com/
http://docs.orangefs.com/v_2_9/Direct_Interface.htm
https://reactjs.org/docs/hooks-intro.html
http://www.solucorp.qc.ca/virtualfs/
https://github.com/apache/spark/blob/5264164a67df98b73facae207eda12ee133be7d/python/pyspark/daemon.py
https://github.com/apache/spark/blob/5264164a67df98b73facae207eda12ee133be7d/python/pyspark/daemon.py
https://lwn.net/Articles/799331/
https://tahoe-lafs.org/trac/tahoe-lafs/
https://www.kernel.org/doc/htmldocs/filesystems/API-d-splice-alias.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/userfaultfd.html
http://plasticfs.sourceforge.net/
https://libsysio.sourceforge.io/
https://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt
https://www.tpc.org/
https://lwn.net/Articles/550555/

DEFUSE: An Interface for Fast and Correct User Space File System Access 22:29

Journal of Systems Architecture 113 (2021), 101902.
[95] Weil, S. A., Brandt, S. A., Miller, E. L., Long, D. D. E., and Maltzahn, C. Ceph: A Scalable, High-Performance

Distributed File System. In 7th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’06) (2006),
pp. 307–320.

[96] Wright, S. A., Hammond, S. D., Pennycook, S. J., Miller, I., Herdman, J. A., and Jarvis, S. A. LDPLFS: Improving

I/O Performance without Application Modification. In 26th IEEE International Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW ’12) (2012), pp. 1352–1359.

[97] Zadok, E., and Bădulescu, I. A Stackable File System Interface for Linux. In LinuxExpo Conference Proceedings (May

1999), pp. 141–151.

[98] Zadok, E., and Nieh, J. FiST: A Language for Stackable Filesystems.

[99] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M. J., Shenker, S., and Stoica, I.

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In Proceedings of the
9th USENIX conference on Networked Systems Design and Implementation (NSDI ’12) (2012), pp. 15–28.

[100] Zhu, Y., Wang, T., Mohror, K., Moody, A., Sato, K., Khan, M., and Yu, W. Direct-FUSE: Removing the Middleman

for High-Performance FUSE File System Support. In Proceedings of the 8th International Workshop on Runtime and
Operating Systems for Supercomputers (ROSS ’18) (2018), p. 6.

ACM Trans. Storage, Vol. 18, No. 3, Article 22. Publication date: August 2022.

	Abstract
	1 Introduction
	1.1 Implementing new FS
	1.2 Interface Requirements
	1.3 State of the Art
	1.4 DEFUSE
	1.5 Contributions and Outlook

	2 Motivation
	2.1 User Space FS Interface Requirements
	2.2 Background

	3 Challenges
	3.1 Efficiency
	3.2 Consistency

	4 DEFUSE Design
	4.1 Overview
	4.2 System Call Redirection
	4.3 Bypassed FD Lookup
	4.4 Managing FD across [basicstyle=]!exec! with FD Stashing
	4.5 Managing [basicstyle=]!mmap! and User Space Paging
	4.6 Maintaining POSIX Compliance for FS Accesses
	4.7 Fault Tolerance
	4.8 Cache Delegation

	5 DEFUSE Implementation and Semantics
	5.1 Code Base and Interface
	5.2 User Space FS Integrations
	5.3 Deploying a DEFUSE-backed User Space FS

	6 Evaluation
	6.1 Single-machine Evaluation
	6.2 Benefits for Distributed Systems
	6.3 Implementation Microbenchmarks

	7 Related Work
	7.1 Related to User Space Libraries
	7.2 Related to FUSE
	7.3 Related to [basicstyle=]!LD_PRELOAD!
	7.4 Related to User Space Paging

	8 Conclusions
	References

