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Abstract

Developers are always on the lookout for simple solutions to
manage their applications on cloud platforms. Major cloud
providers have already been offering automatic elasticity
management solutions (e.g., AWS Lambda, Azure durable
function) to users. However, many cloud applications are
stateful —while executing, functions need to share their state
with others. Providing elasticity for such stateful functions is
much more challenging, as a deployment/elasticity decision
for a stateful entity can strongly affect others in ways which
are hard to predict without any application knowledge. Exist-
ing solutions either only support stateless applications (e.g.,
AWS Lambda) or only provide limited elasticity management
(e.g., Azure durable function) to stateful applications.

PLASMA (Programmable Elasticity for Stateful Cloud
Computing Applications) is a programming framework for
elastic stateful cloud applications. It includes (1) an elastic-
ity programming language as a second “level” of program-
ming (complementing the main application programming
language) for describing elasticity behavior, and (2) a novel
semantics-aware elasticity management runtime that tracks
program execution and acts upon application features as
suggested by elasticity behavior. We have implemented 10+
applications with PLASMA. Extensive evaluation on Amazon
AWS shows that PLASMA significantly improves their effi-
ciency, e.g., achieving same performance as a vanilla setup
with 25% fewer resources, or improving performance by 40%
compared to the default setup.
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1 Introduction

Elasticity is essential to the “pay-as-you-go” cloud comput-
ing model [32], allowing cloud applications to automatically
scale their demand for cloud resources in/out in adaptation
to workload changes. Elasticity maximizes the use of re-
sources and thus reduces infrastructure costs, meanwhile
maintaining performance and service quality of cloud appli-
cations. Developers can program elastic cloud applications
as a set of functions executing independently in response
to specific events (e.g., AWS Lambda and Azure Durable
Function). Such functions, usually encapsulated in VMs/con-
tainers, can be automatically scaled in/out on corresponding
platforms [11, 22, 23, 39, 45], freeing developers and admin-
istrators from server management.

This kind of solution provides developers with ideal auto-
matic elasticity management. However, existing automatic
elasticity management provide better support to applications
consisting of stateless functions, such as routines for image
processing [19] or handlers of IoT devices [15]. These pro-
vide a pure transformation from input to output without
external dependencies at execution. When the state of func-
tions is thus limited to internal state, automating elasticity
is relatively straightforward; it can simply focus on plac-
ing a function on a server node with available resources, or
adjusting the number of function instantiations.
However, many cloud applications are stateful, i.e., func-

tions need to share state with each other. Such scenarios are
common across multiple abstraction levels, e.g., metadata
of distributed file systems (one component of an applica-
tion), data access tier of web applications (an entire tier or
layer), microservice applications [33] (multiple loosely cou-
pled components), and massively multi-user online games
(an entire application). Those stateful applications can not be
executed efficiently in state-of-the-art serverless computing
platforms (e.g., AWS Lambda [4]).
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Providing elasticity for generic stateful functions � or
more generally components or (micro-)services � is very
challenging, as an elasticity decision for one stateful compo-
nent depends on not only that component, but also on others
and its interaction with them. Existing programming models
and frameworks enabling automated elasticity [4, 14, 23]
can not capture such stateful scenarios, thus limiting the
scope of the elasticity paradigm. Automating elasticity in
such cases is di�cult without any knowledge of applications;
many non-functional requirements are hard if not impossible
to learn just by looking at executions of applications. For
instance one may be tempted to straightforwardly rate low-
frequency component interactions as secondary to others
and thus spread corresponding components across servers.
Even if frequency were straightforwardly correlated with
�importance�, such a placement policy could adversely a�ect
frequent interactions � of such infrequently interacting com-
ponents � with others. Existing pro�ling approaches [2, 20]
tracking system-level performance (e.g., server usage) can
not connect low-level performance data to application se-
mantics and trigger appropriate elasticity decisions.

We presentPLASMA(Programmable Elasticity for Stateful
Cloud Computing Applications), a novel framework for im-
plementing expressive elastic cloud applications. It extends
an existingactor-based[26] application programming lan-
guagealong two dimensions:

Elasticity programming language (EPL). PLASMAadds
a second �level� of programming to the underlying applica-
tion programming language. That is, while actors support
building stateful cloud applications that have horizontal,
scalable relations between stateful components [35, 53, 61],
PLASMAincludes a complementaryelasticity programming
language(EPL). The EPL allows users to express desiredelas-
ticity behaviorthrough simple rules based onhigh-levelappli-
cation semantics exposed to the runtime to help it carry out
�ne-grained elasticity management. This is realized without
violating application invariants induced by the actor pro-
gramming model. In this paper we use EPL implementations
for an actor-based language for building stateful distributed
applications, AEON [61], but our concepts are applicable to
others like Microsoft's Orleans [28] and Scala [56].

Elasticity management runtime (EMR). To guide
PLASMAapplications running on cloud platforms in achiev-
ing elasticity,PLASMAinvolves a novelelasticity manage-
ment runtime(EMR) with two main components. (1) The
elasticity pro�ling runtimetracks the behavior of actors (e.g.,
location, resource usage) and their interactions (e.g., message
rates), as per the stated EPL elasticity policy. The information
is used in making global elasticity decisions (e.g., co-locating
highly interactive actors, (de-)provisioning resources) that
are acted upon by (2)PLASMA's elasticity execution run-
time leveraging a two-level architecture to reconcile global
optimization accuracy with scalability.

(a) (b) (c)

Figure 1. PageRank elasticity management example:(a)The
initial placement of graph partitions overloads the top server
which calls for partition migration.(b) Once migration is
performed, the bottom server becomes congested.(c) With
both servers reaching their maximum capacity,PLASMA
migrates to a new server to split the load of the bottom one.

We know of no other programming framework supporting
programmable elasticity forstatefulcloud applications. Since
our above-mentioned novel concepts are independent from
the exact underlying actor language, we focus on those con-
cepts in this paper. We have implemented various (10+) dis-
tributed cloud applications withPLASMA1 including Meta-
data Server, E-Store [64], PageRank [31], Halo's Presence
Service [51], and a Media (micro-)Service [40]. We evaluated
PLASMAusing these applications, showing howPLASMA
enables �ne-grained elasticity with only high-level user in-
put, even outperforming application-speci�c elasticity solu-
tions like Mizan [25].

Roadmap. Ÿ 2 discusses challenges in providing elasticity
for stateful applications and overviewsPLASMA. Ÿ 3 and
Ÿ 4 detailPLASMA's EPL and EMR respectively. Ÿ 5 presents
empirical evaluation. Ÿ 6 presents related work. Ÿ 7 concludes.

2 Motivation and Overview
We �rst motivate our work by a simple example, and further
provide an overview ofPLASMAin this section.

2.1 Elastic PageRank

While elasticity in cloud computing enables an e�cient use of
resources, no existing framework supports �ne-grained elas-
ticity management forstatefulapplications. Consequently,
a whole range of essential algorithms and applications are
being left behind, forcing their developers to resort to an in-
frastructure with suboptimal resource consumption, or build
custom-tailored elastic solutions (e.g., [59, 63, 64]). PageR-
ank [31] is a �tting and simple example of a popular stateful
application. A common approach to speed up PageRank is
to partition the graph it runs on into independent subsets,
and have subgraphs processed in parallel. However, as par-
titions need to communicate with one another, deploying
an elastic partitioned PageRank on a stateless platform like
AWS Lambda [11] requires the use of latency-costly external
storage (e.g., S3 [5], DynamoDB [37]). We have observed

1h�ps://aeonproject.github.io/plasma/webpages/
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25 ms average latency for DynamoDB write requests and
more than 70 s to write graph vertices, edges, and partitions
from a small 22 MB graph into a DynamoDB table; hence it is
currently impractical to develop stateful applications requir-
ing frequent state load/store (e.g., the distributed PageRank
in Ÿ 5.4 needs to update� 1.2 GB data at each round).

Another approach to obtain an elastic PageRank could be
to directly implement the algorithm using an elastic program-
ming language such as Orleans [53], AEON [61] or Akka [1].
Orleans balances workload by equalizing the number of ac-
tors on each server and by replicating stateless actors as the
workload increases. Orleans also co-locates actors that fre-
quently communicate with one another on the same server to
avoid remote communication. AEON also evenly distributes
actors across a cluster. Akka allows programmers to de�ne
router actors that forward received messages to replicated
routee actors in a certain pattern (e.g., round-robin).

However, none of these languages consider server met-
rics (e.g., CPU usage) for ongoing elasticity management.
They can not therefore properly handle applications such as
PageRank � balanced graph partitioning being a notoriously
di�cult task [ 6, 18, 50, 60]. Consider the example given in
Fig. 1 that provides an intuition of elasticity management
for PageRank applications. In this example, a graph is split
into four partitions. PageRank requires both network (i.e.,
partitions need to exchange data) and CPU (i.e., process-
ing graph partitions) resources. While exact performance
characteristics depend on exact graph partitions, cloud plat-
form, and implementation, simple tests on AWS show that
PageRank can be easily CPU-bound (more details in Ÿ 5.4).
Assume partitions are originally evenly distributed across
two servers, as in Orleans, while trying to minimize remote
communication between actors as a secondary objective. But
despite an even split and fair initial placement, a partition
can eventually require much more computation time (Fig. 1a)
to the point where the CPU consumption upper-bound of the
server hosting it is crossed. WithPLASMA, a developer can
set CPU consumption bounds (e.g.,60%� load � 80%) to
ensure that a server is neither over- nor underloaded. To al-
leviate the load of a server,PLASMAthen migrates actors to
another server to respect the aforementioned CPU consump-
tion bounds (Fig. 1b). While the migration was su�cient at
�rst, the bottom server becomes the congested one as work-
loads vary, and with no available server to host additional
workload,PLASMAhas no choice but to spawn a new server
and migrate actors to that new server (Fig. 1c).

PageRank demonstrates the need for application insights
(e.g., CPU is more important than network in PageRank) for
e�cient elasticity management, and for platform metrics (i.e.,
CPU usage). As we shall show, with custom-�tted elasticity
rules,PLASMAcan optimize performance of various applica-
tions and adjust applications' resources to avoid under- and
overprovisioning. We explore several further applications
bene�ting from elasticity management in Ÿ 3.3.

Figure 2. PLASMAtoolchain overview.

2.2 PLASMA Overview

We outline how to develop elastic stateful applications with
PLASMA, which is designed to extend the popular actor
model [16, 26, 44]. Several corresponding languages have
been already conceived for building scalable stateful elastic
cloud applications (e.g., [1, 28, 35, 61]).

Programming with PLASMA. Elasticity inPLASMAis
programmedseparatelyfrom the application logic.PLASMA
assumes only basic concepts for the underlying actor-based
programming language (cf. Fig. 3.I); neither the underlying
actor language nor the programs need to be changed to
bene�t from PLASMA's elasticity model. This allows pro-
grammers to easily enable elasticity for existing applications
without changes, simply by de�ning elasticity rules in a sep-
arate program followingPLASMA's elasticity programming
language(EPL).

As shown in Fig. 2, programmers develop the (I1) appli-
cation program using the actor programming language and
the (I2) elasticity program usingPLASMA's EPL.PLASMA's
compiler takes these two programs as input and generates
two output �les: (O1) an executable containing both the appli-
cation's binary code andPLASMA's elasticity management
runtime code, and (O2) a �le with elasticity actions for this
application. To deploy the application programmers only
need to launch the executable that takesO2 as input.

Elastic execution with PLASMA. As shown in Fig. 2,
when the application is executing on a cloud platform, the
PLASMAelasticity management runtime puts the EPL elas-
ticity rules to work based on the actual performance features
observed at servers about actors and their interaction. More
speci�cally,PLASMA's elasticity management runtime(EMR)
involves anelasticity pro�ling runtime(EPR) and anelasticity
execution runtime(EER). The EPR keeps track of the perfor-
mance of actors, focusing on those that are a�ected by elas-
ticity decisions, as per the elasticity rules. Given the declared
EPL elasticity rules and the performance information from
the EPR, the EER takes decisions for placing actors among
available servers and/or adapting the number of servers,
hence realizing automated application elasticity. The EMR
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performs adjustments when creating actors, and everyelas-
ticity (time) period(set by users). Note that the EMR will
not blindly follow rules to conduct elasticity management,
but rather will consider the actual runtime situation (e.g.,
resource limitations, migration overhead) in its decisions.

The EMR does not interfere with the execution of the
original language's runtime; the EPR only collects runtime
data of actors. In particularPLASMAinherits the fault toler-
ance mechanism from the original runtime and relies on it
to handle failures in the application. Failures in the EMR are
handled by a separate mechanism (presented in Ÿ 4).

3 Elasticity Programming Language (EPL)
This section describes howPLASMA's EPL captures elasticity
behaviors based on high-level application semantics.

3.1 Actor-based Elasticity

Given a distributed actor-based application, elasticity deci-
sions boil down to placing/migrating actors among available
servers for adjusting to workload and variations therein.

Execution features. Numerousfeaturesof an actor-based
application's execution can be used as cues for its perfor-
mance, and to drive actor placement. The features supported
by PLASMApertain to three categories:
[f-ra ] Resource usage of actors (e.g., CPU).
[f-rs ] Resource usage of servers (e.g., network).
[f-ia ] Interaction between actors (e.g., message rate).

Elasticity rules. Similarly to the above classes of runtime
features, we can classifyrulesguiding elasticity decisions
based on the above features by the type ofreaction(behavior)
they induce on the application execution:
[r-r ] Resource elasticity rulescorrespond to resource fea-

tures, and strive for a better resource usage. Server re-
sources are not directly in�uenced, but rather a�ected in-
directly by adjusting the placement (and thus resource us-
age) of actors, and so this category of rules corresponds to
both [f-ra ] and [f-rs ]. These rules provide programmers
with a way to reserve certain amounts of resources for
actors or balancing resource usage among servers. For ex-
ample, programmers can specify upper and lower bounds
on CPU resources for servers. If a server's CPU utilization
hits the upper bound, a select group of its actors will be
migrated to other servers with idle CPU resources.

[r-i ] Interaction elasticity rulescorrespond to actor interac-
tion features [f-ia ]. These rules allow programmers to
expose high-level application semantics to the runtime,
allowing it, e.g., to co-locate actors that strongly inter-
act, as per application semantics and actually observed at
execution, thus reducing communication latency.

3.2 Syntax

Next, we detail the syntax and usage ofPLASMA's EPL,
realizing the above elasticity programming model. We opted
for a declarative language over an imperative one as we feel

I. Actor-based application programming language basics

Program prog ::= aclass
Actor class aclass ::= anamefprop f uncg
Property prop ::= type pname;
Function f unc ::= type f name( type : : :) f : : :g

II. Elasticity programming language

Policy pol ::= rul
Rule rul ::= cond) beh;
Actor actor ::= atype( var) j atype j var
Actor type atype ::= anamej any
Condition cond ::= condor condj condandcond

j true j f eat:stat compval
j actor in ref ( actor:pname) [f-ia ]

Feature f eat ::= entity:res
j cllr :call ( actor:f name) [f-ia ]

Entity entity ::= actor [f-ra ]
j server [f-rs ]

Caller cllr ::= client j actor
Statistic stat ::= count j size j perc
Resource res ::= cpu j memj net
Comparison comp ::= < j > j >= j <=
Behavior beh ::= balance ( fatypeg;res) [r-r ]

j reserve ( actor; res) [r-r ]
j colocate ( actor; actor) [r-i ]
j separate ( actor; actor) [r-i ]
j pin ( actor) [r-i ]

Value val 2 N [ R

Figure 3. Basic de�nitions for actor programming language
and abstract syntax ofPLASMA's EPL.

that it is more natural for developers to express �policies�
that way (cf. [43]). The EPL assumes only basic features of
the underlying actor programming language, as shown in
Fig. 3.I: a program includes a set of actors of di�erent types
(aclass), each declaring a set of functions (f unc) � which
give rise to messages � and �elds (properties �prop). x
denotes several instances ofx.

Actor-condition-behavior. The EPL (see Fig. 3.II) is used
to describe �separatelyfrom the main program � a policy
pol that consists of a set of elasticity rulesrul . PLASMA's
elasticity rules (both [r-r ] and [r-i ]) are expressed in an
actor-condition-behaviorstyle. That is, rules usually purport
to features regarding certainactors, and when certaincondi-
tions on those features are met which may adversely a�ect
performance, the runtime is advised to apply elasticitybe-
haviors (to certain actors).

Actors. As actors of the same type tend to have similar
behavior patterns, elasticity rules are expressed a priori for
actor types, and, as detailed shortly, behaviors are expressed
similarly with respect to actors of given types. A subject type
of actor is speci�ed by the name of the actor type's name
anameas de�ned in the main application program. However,
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a rule can contain several actors of the same type. In order
to disambiguate yet keep de�nitions concise by avoiding
verbose variable declarations in front of every rule, we use
a form of implicit variable declaration, where the use of an
actor type in a rule can declare a variablevar in an inline
fashion. E.g., a condition relating toInnernode(i) speci�es
actor typeInnernode and introduces variablei to refer later
to all Innernode instances to which the condition applies.

PLASMAalso introduces the special typeany, allowing
rules to be de�ned for all actors in an application. Note that
PLASMAcurrently treats actor subtypes in the application
program as distinct types from their parent types.

Conditions. Conditions are used to specify situations
that may a�ect the performance of applications. Though
rules � and thus a priori also conditions � relate to actor
types, as alluded to above, conditions end up selecting a
subset of actors of such a type. While actors of the same
type follow the same execution logic, their actual runtime
behaviors will also be a�ected by workloads and thus di�er.

Conditions can be composed (and, or ) of more elementary
conditions. Basic conditions can be trivial (true ) or compare
statisticsstat (highlighted inorange) for a runtime feature
f eat to some valueval (a lower or upper bound), where sta-
tistics can be a number of instances (count ), asize value, or
a perc entage. Note that not all statistics apply to all features.

Actual features are of three basic categories (the actual
features in the syntax are highlighted ingreen).

The �rst category (i ) consists in conditions of the shape
actor in ref ( actor0:pname) which essentially select actors
of the former typeactorthat are referenced by speci�c �elds
pnameof actors of the second typeactor0.

The second category (ii ) corresponds to resource features
of speci�c entities (entity:res). Two subcategories arise from
the two types of entities considered:actors (ii :a) or server s
(ii :b). They correspond to [f-ra ] and [f-rs ] respectively. The
resources considered here, in turn, are of three types (blue):
cpu, memory, andnet work usage.

The third category (iii ) corresponds to interaction features
[f-ia ] just like conditions on referencing (i ). For speci�c
types of messagesf namesent from eitherclient s oractors
of one type to actors of another type (cllr . call ( actor:f name) )
we consider the number of such messages sent per time unit,
e.g., 1 min, their size, or the percentage of a particular type
of calls received by an actor, out of the total number of this
type of calls received by all actors on the same server.

Behaviors. Finally, (elasticity) behaviorsbeh(red) tell the
runtime how to react to speci�ed conditions on given actors.
There are �ve kinds of elementary behaviors (Fig. 3). The
�rst two give rise to resource elasticity rules [r-r ] and the
others yield interaction elasticity rules [r-i ].

In the former category we havebalance and reserve .
balance ({ atype} , res) prompts the runtime to balance the

workload on each server by migrating actors of types indi-
cated inatype from overloaded servers to ones with idle
resources.res refers to the type of critical resource that
should be taken into consideration when balancing work-
loads. Note thatbalance does not allow type variables to
be used in its �rst argument � usingatype as opposed to
actor. This is becausebalance targets servers instead of ac-
tors. Referring to speci�c actors here, programmers could
add conditions on those actors (e.g.,cpu. perc >30); then the
runtime could only migrate those actors to balance the work-
load. This would eliminate most �exibility for the runtime
(e.g., migrating actors with CPU below 30% might alleviate
a bottleneck).reserve ( actor;res) instructs the runtime to
keep thoseactors ondedicatedservers exclusively, whose
resources are su�cient to meet the actors' demands.resspec-
i�es the type of desired resources on the dedicated servers.

The second behavior category spanscolocate , separate
andpin . colocate (actor;actor) tells the runtime to keep the
concerned actors on the same server. Notice that conditions
in the rule can also (further) constrain the interaction be-
tween the actors. Consideractor2.call (actor1:f name1).count
with f name1 a function ofactor1. Placing a condition on
this term can, for instance, restrict the total number of mes-
sagesf name1 toactor1 called byactor2. Conversely, behavior
separate ( actor;actor) instructs the runtime to keep the ac-
tors of the two types separated whenever resources are avail-
able whilst the accompanying conditions are satis�ed. This
can be used for example when actors of the two types run
computationally demanding activities (i.e., instead,colocate
may obstruct their operations). Lastly,pin ( actor) indicates
that particular actors should not be moved. This prevents
migration from hampering highly available services.

3.3 Examples

We show the use ofPLASMA's EPL via �ve concrete exam-
ples. These applications are evaluated empirically in Ÿ 5.

Metadata Server.The Metadata Server is composed of
folders and �les, handled byFolder actors andFile actors
respectively, all of which can be opened and accessed by
remote clients. Some folders are in much higher demand
than others, thus receiving a signi�cant portion of the overall
number of requests. To avoid congestioning servers, we opt
to migrate highly demanded folders to idle servers.

Performing such elasticity managements requires the run-
time to have knowledge of application semantics, as is easily
achieved withPLASMA. For instance, the aforementioned
elasticity behavior can be expressed inPLASMAby de�ning
the following elasticity rule: aFolder actor is migrated to
an idle server (reserve ) when (1) the current server's CPU
usage exceeds 80% and (2) this folder receives more than 40%
client requests among allFolder actors on this server. The
rule also tells the runtime to place allFile actors under this
Folder actor on the same server (colocate ).
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Table 1. Applications implemented withPLASMA. We show
elasticity rules and evaluation for the �rst �ve applications.

Application LoC Elasticity rules (and number of rules)
Metadata 2531. Colocate Folder with Files in it
Server (since they are accessed together)
PageRank [31] 4651. Balance CPU workload
E-Store [64] 645 1. Put hot Partitions on idle servers

2. Colocate parent-child Partitions
3. Balance CPU workload of Partitions

Media 756 1. Balance network workload for FrontEnds
Service [40] 2. Provide VideoStream with enough CPU

3. Colocate linked VideoStream and UserInfo
4. Avoid migrating MovieReview
5. Balance CPU workload of ReviewChecker
6. Colocate linked ReviewEditor and

UserReview
Halo Presence 314 1. Balance CPU workload of Routers
Service [51] 2. Colocate Session with Players in it
B+ tree 1457 1. Colocate parent-child inner nodes

2. Put leaf nodes on separate servers
Piccolo [57] 564 1. Balance CPU workload for Workers

2. Colocate Worker and Table that Worker
reads data from

zExpander [66] 5061. Put leaf nodes on idle servers
Cassandra [47] 2211. Put table replicas on di�erent servers

server . cpu. perc > 80 and
client . call (Folder(fo).open). perc > 40 and
File(fi) in ref (fo.files) )

reserve (fo, cpu); colocate (fo, fi);

PageRank.As we introduced in Ÿ 2.1, we should balance
the PageRank partitions according to CPU usage:

server . cpu. perc > 80 or server . cpu. perc < 60 )
balance ({Partition}, cpu);

E-Store.E-Store [64] is an elastic partitioning framework
for distributed OLTP DBMSs. Initially, root-level keys are
range-partitioned into blocks of �xed size and co-located
with descendant tuples. At runtime, the system monitors
the workload on each server and avoids imbalance. When
observing a server's resource usage (e.g., CPU) exceeding a
high-water mark, the system selectsk% partitions with high
activity on the hot server and migrates them to idle servers.
If inversely observing a server's resource usage being below
a low-water mark, the system also redistributes the data.

It is a typical balancing problem where programmers need
to de�ne the conditions to trigger data distribution (i.e., high-
water mark and low-water mark), and how to redistribute
data (i.e., migrate hot data to idle servers). Furthermore, since
data is organized in a tree structure, we can not solely migrate
the hot partitions but also need to consider moving their
descendants. We express E-Store needs with these 3 rules:

server . cpu. perc > 80 and
client . call (Partition(p1).read). perc > 30 )

reserve (p1, cpu);
Partition(p2) in ref (Partition(p1).children) )

colocate (p1, p2);
server . cpu. perc < 50 ) balance ({Partition}, cpu);

Media Service.The Media Service [40] is a more intricate
stateful application, it provides two major functions, (1) rent
and watch movies and (2) review movies, involving 8 types
of interdependent actors in acloud microservice.

Speci�cally, theFrontEnd actors are the entrance of the
Media Service and are network-intensive.VideoStream ac-
tors stream movies to users and are CPU-intensive and latency-
sensitive. AUserInfo actor contains the information of a
user: when a user is watching a movie, theVideoStream ac-
tor keeps updating this user's watching history to the user's
UserInfo actor. This yields the following three rules:
server . net . perc > 80 or server . net . perc < 60 )

balance ({FrontEnd}, net );
server . cpu. perc >50 ) reserve (VideoStream(v), cpu);
VideoStream(v). call (UserInfo(u).track). count > 0 )

pin (v); colocate (v, u);

In addition, users can read/write movie reviews via the
ReviewEditor actors, which frequently interact with the
UserReviewactors by updating reviews on them.MovieReview
actors, on the other hand, store a large amount of reviews
by movie types (e.g., comedy), thus are memory-intensive.
Finally, users' reviews will be checked byReviewCheckerac-
tors before publication, and hence are CPU-intensive. Such
semantics lead to the remaining three elasticity rules:

ReviewEditor(r). call (UserReview(u).update). count
> 0 ) pin (r); colocate (r, u);

true ) pin (MovieReview(m));
server . cpu. perc > 90 or server . cpu. perc < 70 )

balance ({ReviewChecker}, cpu);

Halo Presence Service.The Halo Presence Service [51]
is a deployed actor-based system that tracks player liveness
in Halo 4. Active game consoles periodically send heartbeat
messages to the service. Each of these messages is �rst de-
crypted by a randomly selectedRouter actor, before it is
forwarded to the relatedSession actor which �nally for-
wards it to the correspondingPlayer actor.

A Session actor can only send messages toPlayer actors
partaking in the session it manages, whilePlayer actors can
only belong to one session at a time. This isolation between
Session actors and between thePlayer actors of di�erent
sessions can be leveraged to improve the system communi-
cation performance. For instance, remote messaging can be
avoided by co-locating at runtimePlayer actors with their
correspondingSession actor:

Player(p) in ref (Session(s).players) )
pin (s); colocate (p, s);
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Figure 4. PLASMA's runtime system: GEMs manage appli-
cation scale; LEMs handle actors of single servers.

Router actors require a nontrivial amount of CPU re-
sources to decrypt messages from clients, to the point where
it becomes essential to balance the CPU workload by care-
fully distributing Router actors across servers:

server . cpu. perc > 80 or server . cpu. perc < 60 )
balance ({Router}, cpu);

3.4 Discussion on Language

We made several concessions for simplicity. An important
choice was to consider only restrictedscopes: in all condi-
tions relating to interaction features , we only considerdi-
rect interaction. E.g., when conditioning the number of calls
as inactor2 call ( actor1:f name1). count we only consider
direct calls from an instance ofactor2 to f name1 of one of
actor1, and not indirect ones, e.g., through a functionf name3
of intermediary actors of some typeatype3. Considering
such transitive interaction could become quite complex: for
given instances ofactor1 andactor2, one could focus on calls
through asingleinstance ofactor3, or any number. While
both options (and more) could be expressed by introducing
a larger set of variables and making existential vs universal
quanti�cation explicit, it leads to a much more complex lan-
guage. Restricting scopes also simpli�es pro�ling, especially
with recursive types. Ÿ 4.3 discusses con�ict resolution.

Our language is one point in the design space, and ex-
tensions such as additional features and behaviors are the
subject of ongoing investigations.

4 Elasticity Management Runtime (EMR)
PLASMA's elasticity management runtime (EMR) is inte-
grated into the runtime of the underlying actor programming
language. The EMR involves anelasticity pro�ling runtime
(EPR) and anelasticity execution runtime(EER) (cf. Fig. 4).

4.1 Elasticity Pro�ling Runtime (EPR)

In short, the EPR, which runs on each server, is responsible
for collecting performance-related metrics, and feeding them
to the EER. Corresponding to the three types of execution
features ofPLASMA(cf. Ÿ 3.1), the EPR collects performance

information on resource usage of actors [f-ra ], of the server
it runs on [f-rs ], and on interaction among actors [f-ia ].

For [f-rs ], the EPR reads system-level performance met-
rics from the server directly � we assume servers expose
an interface such asstat under /proc in Linux. For features
[f-ra ] and [f-ia ], the EPR keeps track of the behaviors of
actors. As the elasticity rules involve speci�c actor types, the
EPR can focus solely on the actors a�ected by these rules,
thus limiting the overall pro�ling overhead. In particular, the
EPR collects (1) the execution time of each task, (2) the size
of actors (i.e., memory footprint), and (3) the count and size
of di�erent types of messages and involved actors. Note that
the elasticity management service usually runs at every elas-
ticity period (a con�gurable interval). The EPR only collects
performance information since its last run.

4.2 Elasticity Execution Runtime (EER)

The EER decides on placement of actors among available
servers and on adapting the number of required servers.

Two-level architecture. PLASMA's two-level EER design
includeslocalandglobal elasticity managers(LEMs and GEMs
respectively). This design makes a practical tradeo� between
scalability(distributed LEMs with local views and actions)
andaccuracy(centralized GEMs to provide a more complete,
global, view of the system). Duties are thus split in that a
LEM works only for a single server and is responsible for
interaction elasticity rules [r-i ] as these can be monitored
locally. On the other hand a GEM oversees a group of servers,
and is responsible for resource elasticity rules [r-r ] among
these servers, as these need to place actors among a group of
available servers, requiring global performance information.

LEMs. When an elasticity management cycle begins, a
LEM reads the performance information of the server and
actors from its local EPR. The LEM summarizes such infor-
mation, and reportsimperativeinformation (e.g., focusing
on actors furthest beyond thresholds) to its GEM. The LEM
also iterates through its actors and checks related interac-
tion elasticity rules [r-i ] (if any). If the conditions in the
rules are satis�ed, the LEM identi�esexecutable actions. Take
for example acolocate rule specifying actors of two types
atypeandatype0, with frequent interaction through some
function f name, e.g.,atype. call ( atype0. f name). count
> 1000. The LEM goes through eachatypeactor and checks
the message count between it and remoteatype0 actors gen-
erating a migration action when a message count is larger
than the threshold de�ned. Notice that the LEM managing
theatype0 actor does the same but on a di�erent server. The
two LEMs communicate directly, without passing by a GEM,
to decide whose actor to migrate to the other's server (by
default the one with lower resource usage).

GEMs.A GEM manages a subset of servers; each server is
managed by one GEMat a time. After a certain time period
(e.g., elasticity time period), each LEM randomly picks a new
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Table 2. API summary.
(a) GEM & LEM local functions

Function Functionality
getActRules Return actor elasticity rules
getActorsRuntime Return runtime info of all local actors
applyActRules Return migration actions as per actor run-

time info and elasticity rules on LEMs
getResRules Return resource elasticity rules
collectActorsFResRulesReturn runtime info of actors related to

resource elasticity rules
getServerRuntime Return local server runtime info
resolveActions Resolve con�icted migration actions of

LEMs and GEMs. Return �nal actions
applyResRules Return migration actions according to ac-

tor and server runtime info and resource
elasticity rules on GEMs

checkIdleRes Decide if one server has enough idle re-
sources to accept an actor

(b) Action datatype

Action datatype �eld Content
actor Actor for migration
srcServ Server currently holding the actor
trgServ Target server for actor migration

GEM. After receiving the pro�ling information from LEMs of
its managed servers, a GEM creates aglobal runtime snapshot
for all its managed servers. Referring to this snapshot, the
GEM checks the conditions of resource elasticity rules. If
any are met, the GEM identi�es executable actions (O2 in
Fig. 2) from the rules, and tasks servers.

Take for example abalance rule. When its condition is
met (typically a lower or upper bound on server resources
is exceeded), the GEM migrates a select set of actors among
its managed servers to balance workload.PLASMAuses a
simple heuristic to thus select actors: a GEM only migrates
actors from overloaded servers (i.e., with resource usage
above upper bounds) to servers with enough idle resources
� especially below speci�ed lower bounds. If all of a GEM's
managed servers are overloaded (resp. under-utilized), it
broadcasts anadjustmentmessage to all other GEMs. GEMs
reply whether their observations are similar. If the majority
of replies received by the requester GEM corroborate its own
view, it increases (resp. decreases) the number of servers.

LEM-GEM interaction. Alg. 1 and Alg. 2 outline how
LEMs and GEMs coordinate on generating migration actions
based on elasticity rules and runtime performance informa-
tion (using APIs summarized in Tab. 2). Each LEM (Alg. 1)
reads actors' runtime information from the pro�ling runtime
and identi�es migration actions (line 7) based on actor elas-
ticity rules (line 5). The LEM then checks resource elasticity
rules and reports related actors' runtime information as well
as its server runtime information to a GEM (line 12).

The GEM (Alg. 2) starts processing reports from LEMs
when it receives enough of those (line 8). It only checks

Algorithm 1 Elasticity execution on LEMlem

1: Local variables:
2: existActors B local actors and actors to be migrated to this server

3: gems B addresses of GEMs

4: task processElasticitydo
5: actRules getActRules()
6: actorsRT getActorsRuntime()
7: lemActions applyActRules(actorsRT;actRules)
8: resRules getResRules()
9: ractorsRT collectActorsFResRules(actors; resRules)

10: serverRT getServerRuntime() B collect server runtime info

11: gem gemx j gemx 2 gems B pick random GEM

12: send(REPORT, ractorsRT;serverRT) to gem B report to GEM

13: wait until receive(RREPLY, gemActions) from gem
14: €nalActions resolveActions(lemActions;gemActions)
15: for all (action2 €nalActions) do
16: send(QUERY, action) to action:trgServ B can server accept

17: upon receive(QUERY, action) from lem0do
18: if checkIdleRes(existActors; action:actor) then
19: existActors existActors[ f action:actor} B take resources

20: send(QREPLY, action) to lem0

21: upon receive(QREPLY, action) do
22: migrate action:actor to action:trgServ

resource elasticity rules and generates corresponding migra-
tion actions (line 10) and informs relevant LEMs (line 14). A
LEM and a GEM can generate di�erent, potentially con�ict-
ing, actions for the same actor. A LEM then resolves such
con�icts once it receives migration actions from its GEM
(line 14). Finally, the LEM starts migrating actors when the
target server agrees to accept them (line 22).

New actor creation. When the application creates an ac-
tor (of type atype) on a server, this server's LEM queries
the GEM, which managed it during last the elasticity period,
where to place the new actor. The GEM checks relevant elas-
ticity rules and decides the initial placement. E.g., the rules
require to co-locateatypeactors with references, or identify
atypeactors as CPU-intensive. Then the new actor is to be
co-located with another actor that has a reference to it, or
put on a server with idle CPU resources. If the GEM can not
�nd a valid rule for atypeactors, it randomly picks a server
from the ones it manages. With the help of input elasticity
rules,PLASMAhas a higher chance to place new actors on
the right servers from the start, as we will see shortly.

4.3 Discussion on Runtime

Conflict resolution. As stated above, LEMs and GEMs
identify executable actions based on rules. These actions are
enqueued at LEMs, and are executed by the actor program-
ming language's runtime via its live actor migration proce-
dure. However, as programmers may de�ne multiple elas-
ticity rules for one actor type, con�icts may arise.PLASMA
provides two mechanisms to resolve these. (1) Whencompil-
ing elasticity rules,PLASMA's compiler detects con�icting
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Algorithm 2 Elasticity execution on GEMgem

1: Local variables:
2: actorsRTs B queue for actor runtime information from LEMs

3: serversRTs B queue for server runtime information from LEMs

4: actionQs B map of addresses to action queues

5: upon receive(REPORT, actorsRT, serverRT) from lem do
6: actorsRTs actorsRTs� f actorsRTg
7: serversRTs serversRTs� f serverRTg
8: if jserversj > K then B K is given by user

9: resRules getResRules()
10: actions applyResRules(actorsRTs; serversRTs; resRules)
11: for all (act 2 actions) do
12: actionQs[act:srcServ]  actionQs[act:srcServ] �f actg
13: for all (addr j 9 actionQs[addr] do
14: send(RREPLY, actionQs[addr]) to addr B ret to LEM

rules for the same actor type, and issues warnings. (2) When
applications arerunning, LEMs resolve the remaining con-
�icts by choosing the migration action for an actor with the
highest priority, which can be speci�ed by programmers or
determined by assigning priorities to migration actions. E.g.,
colocate can break the resource elasticity actions ofbalance
in that multiple LEMs might try to migrate their actors to the
same server and overload it. IfPLASMAprioritizesbalance
overcolocate , it will only allow the target server to accept
actors if it has enough resources. Existing con�ict resolution
approaches [30, 42, 47] can also be leveraged inPLASMA;
they are beyond the scope of this paper.

Fault tolerance. As is evident from Alg. 1 and Alg. 2, no
state synchronization is required between LEMs and GEMs
or among GEMs. Hence, if a GEM fails while computing the
set of migration actions, LEMs can still progress by picking
another GEM through the shu�ing process described. We
run multiple GEMs for scalability and fault tolerance when
evaluatingPLASMAin Ÿ 5.

Actor placement stability. We opt for a conservative
policy to actor migration to minimize the cost associated
with actor state �re�-migrations. More aggressive migration
policies [46] could be employed, e.g., by pre-pro�ling actor
resource consumption or migrating more actors than strictly
needed, but no optimal policy exists.

To avoid frequent actor migrations, an actor can only be
migrated if it stayed on the same server for a certain time,
which is set to be equal to the elasticity period (cf. Ÿ 2.2).

5 Evaluation
The concepts ofPLASMAcan be implemented in many actor
programming languages.

5.1 Synopsis
We evaluate our approach through an implementation in
AEON [61] involving 3500 Python LoC added to the AEON
compiler, that parses bothPLASMAelasticity rules and AEON
program to generate an elasticity con�guration �le (PLASMA
compiler in Fig. 2). We also extend AEON's runtime by 5000

C++ LoC to collect actors' and platform's runtime informa-
tion (pro�ling runtime in Fig. 2), and conduct elasticity man-
agement (execution runtime in Fig. 2). We chose AEON over
Orleans [53] and Akka [1], as when starting our prototyp-
ing, Orleans' code-base was undergoing frequent signi�cant
updates while Akka lacks live actor migration features.

We evaluatePLASMAwith several stateful applications
on Amazon AWS. The elasticity rules used for each scenario
are described in Ÿ 3.3, with their summary in Tab. 1, demon-
strating the low e�ort with which a multi-actor application
can be complemented withPLASMA.

We �rst evaluate the overhead ofPLASMA's runtime
(Ÿ 5.2). Next we demonstrate how a simple elasticity rule
leveraging application-speci�c knowledge improves a Meta-
data Server's elasticity management (Ÿ 5.3). We compare the
e�ciency of PLASMAagainst the state of the art on an elas-
tic PageRank (Ÿ 5.4). Then we showcase howPLASMAcan
help developers implement speci�c elasticity management
in E-Store (Ÿ 5.5). We show howPLASMAhandles highly
dynamic workloads in a Media Service (Ÿ 5.6). Finally, we
evaluate how di�erent number of GEMs impact the perfor-
mance of the Halo Presence Service (Ÿ 5.7).

5.2 PLASMA's Runtime Overhead

First we assert that the EPR does not impose high overheads
on applications when tracking performance data. The EPR
only collects runtime information of actors on the server it
is deployed on, the EPR overhead is therefore only a�ected
by the number of actors and messages on a single server,
regardless of the number of servers used by this application.

To this end, we use an online chat room microbenchmark
where users, represented each by an actor, can exchange
messages with others within the same room. The EPR tracks
information on all messages (e.g., type, size, number) and the
times for actors to process them. The chat room is deployed
on a single AWS instance, i.e., actors are stationary, and is
tested with di�erent numbers of users. Tab. 3 shows the pro-
�ling overheads ofPLASMA's EPR on the chat room actors
by normalizing the execution time ofPLASMAwith that
of a vanilla system without elasticity (e.g., 1.007 means 7‡
overhead). The setupx-instancerefers to the number of users
x, with x 2 f 8; 16; 32g, deployed on either am1.smallinstance
identi�ed as s or a m1.mediuminstance identi�ed asm. In all
setups, users keep generating messages at high rates to put
pressure on the server's CPU. In this overloaded situation
we never observe more than 2.3% overhead, showing that
message latency is virtually una�ected by pro�ling.

While the overhead of the EER is highly related to the
elasticity rules, we do not observe any noticeable overhead
(i.e., over 1%) on any of the applications we evaluate. The EER
overhead remains low thanks to: (1) its periodical execution,
the EER only executes for a couple of seconds per period in
our scenarios, and (2) the low rule count (i.e., less than 10)
needed to cover applications elasticity requirements.
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Table 3. Normalized EPR overhead.

8-s 16-s 32-s 8-m 16-m 32-m
1.007 1.001 1.023 1.003 1.006 1.005

Figure 5. Simple reserve & colocate vs
default vs no rule in Metadata Server.

(a) (b)

Figure 6. PageRankPLASMA's vs Orleans'
elasticity,(a)static &(b) dynamic allocation.

5.3 Metadata Server

In our �rst scenario we display the e�ect of a simple mix
of Resource elasticity rulesandInteraction elasticity rulesin
PLASMAwhen deployed on a Metadata Server (cf. Ÿ 3.3).

In the experiment, we create 4 folders with 8 �les in each.
The server is deployed on an AWSm1.smallinstance, and 16
clients on anotherm1.mediuminstance. This setup overloads
an m1.small instance, i.e., simulates a service under high
demand. Among the 4Folder actors, 1 actor receives 50%
of requests from clients, and the other 3 evenly share the
remaining 50%.File actors in a same folder have the same
workloads. We compare three setups: (1)res-col-ruleexecutes
the reserve and colocate elasticity rule de�ned in Ÿ 3.3;
(2) def-rule mimics a default rule, simply migrating actors
with heavy workload (i.e.,Folder actors) to an idle server;
(3)no-ruledoes not conduct any elasticity management. The
�rst two setups require an extra server; they use an elasticity
time period of 80 s. We run each setup for� 100 s to collect
enough data before and after elasticity management.

Fig. 5a shows that the elasticity rule (res-col-rule) reduces
latency by 40% compared to both other setups. The second
setup (def-rule) however does not display any visible latency
bene�t compared to the setup without elasticity (no-rule)
because accessing a folder implies accessing the �les con-
tained in it, even when theFolder andFile actors are on
di�erent servers. Therefore all accesses to aFolder actor
on one server end up being forwarded toFile actors on
another server, provoking an overheard that nulli�es the
potential migration gains. This demonstrates the importance
of application knowledge in elasticity management.

5.4 PageRank

In this scenario, we show the e�ciency ofPLASMAon a
distributed actor-based variant of the popular PageRank [31]
algorithm. We focus on the basic algorithm without speci�c
optimizations as these do not address workload imbalances.

In our implementation, eachWorker actor iteratively com-
putes on one partition and synchronizes at the end of each
iteration with the other workers to exchange computation
results. Since all workers synchronize at the same time, the
overall execution speed is limited by the slowest worker.

Though many partitioning schemes and systems have
been proposed for partitioning graphs [6, 18, 50, 60] and
thusly balancing workloads across workers, ensuring a fair
workload distribution remains a non-trivial task. We use
SNAP's LiveJournal online social network [24] as dataset.
The graph is split with the popular graph partitioning tool
METIS [18] that computes balanced partitions.

Dynamic workload balance. We �rst show how PLASMA
balances workloads among a�xed set of resources. This ex-
periment uses 8 VMs, each being an AWSm5.largeinstance
(2 vCPUs and 8 GB memory), for a total of 16 vCPUs that are
connected with 10 Gbps links. All runs are congestion-free.

We �rst comparePLASMAwith elasticity management to
the limited elasticity management of Orleans consisting in
attempting to balance workload by putting the same number
of actors on each server. We implement the same elasticity
rules in AEON. We use METIS to evenly split the graph in
32 partitions, resulting in 32 actors, andrandomlyassign
them across the 8 VMs. Since the number of actors is already
balanced across servers, Orleans elasticity management does
not take further action.PLASMAuses the same partition as-
signment, but combines it with abalance resource elasticity
rule that sets the lower bound to 60% and upper bound to
80% (as for Piccolo in Ÿ 3.2). Once the PageRank application
starts,PLASMA's EMR balances the worker actors among
the 8 VMs based on their CPU resource usage, while the
worker actors stay in the same VMs with Orleans' elasticity.
The experiment is repeated 3 times for each of the 5 di�er-
ent random distributions used. Fig. 6a shows that PageRank
converges 24% faster with our elastic solutionPLASMAredis-
tributing actors, compared to Orleans elasticity management.

Fig. 7b and Fig. 7c show the detailed behavior in a given
experiment run of the CPU consumption for each server and
the per-server actor distribution respectively. Once worker
actors �nish reading data and start iterative computations,
the CPU usage of each server starts diverging greatly despite
the even partitioning performed by METIS.PLASMAdetects
load imbalance and moves worker actors from overloaded
servers (e.g., server 5) to under-utilized ones (e.g., servers
1 and 2, until the CPU usage of servers falls between the
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