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Software-defined wide area networking (SD-WAN) enables dynamic network policy control over a large

distributed network via network updates. To be practical, network updates must be consistent (i.e., free of

transient errors caused by updates to multiple switches), secure (i.e., only be executed when sent from valid

controllers), and reliable (i.e., function despite the presence of faulty or malicious members in the control

plane), while imposing only minimal overhead on controllers and switches.

We present SERENE: a protocol for secure and reliable network updates for SD-WAN environments. In

short: Consistency is provided through the combination of an update scheduler and a distributed transactional

protocol. Security is preserved by authenticating network events and updates, the latter with an adaptive

threshold cryptographic scheme. Reliability is provided by replicating the control plane and making it resilient

to a dynamic adversary by using a distributed ledger as a controller failure detector. We ensure practicality by

providing a mechanism for scalability through the definition of independent network domains and exploiting

parallelism of network updates both within and across domains. We formally define SERENE’s protocol and

prove its safety with regards to event-linearizability. Extensive experiments show that SERENE imposes

minimal switch burden and scales to large networks running multiple network applications all requiring

concurrent network updates, imposing at worst a 16% overhead on short-lived flow completion and negligible

overhead on anticipated normal workloads.

CCS Concepts: • Networks→ Network policy; Network security; • Security and privacy→ Distributed
systems security.
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1 INTRODUCTION
The advent of software-defined wide area networking (SD-WAN) has brought the concurrent network
update problem [1] to the forefront. In short, SD-WANs are wide area networks (WANs) covering

multiple sites of an organization managed using software-defined networking (SDN) concepts [2] –

chiefly the separation of 1. the data plane, in which packets are forwarded towards their destinations
by switches based on forwarding rules installed at those switches, from 2. the control plane, which
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is responsible for setting up said forwarding rules across switches from a conceptually centralized

perspective. The challenge is thus to construct a control plane for SD-WAN capable of covering

several large geographically separated networks. Building a single consolidated control plane across

WANs agnostic of the different underlying domains (e.g., constituting autonomous systems or based

on some locality in the physical topology) can optimize the processing of consistent updates [3–6].

Yet, it is likely to be ineffective and scale poorly in practice due to the high communication cost of

synchronization, besides requiring strong trust between the domains. Inversely, managing domains

independently, each with a separate control plane, can help perform updates in parallel (e.g., when

updates only affect single domains), and can ensure that failures (e.g., misconfigurations, crashes,

malicious tampering) in one domain do not affect others. However, this does not provide support

for updates affecting multiple domains in a consistent manner.

Requirements. A viable SD-WAN control plane should reconcile all the following requirements:

Consistency: First and foremost, updates can occur concurrently, yet — whether affecting indi-

vidual domains (intra-domain routes) or multiple domains (inter-domain routes) — these should

meet the sequential specification of the shared network application. That is, they should not

create inconsistencies leading to network loops, link congestion, or packet drops.

Security: Messages — whether sent by the data plane due to some network event, or sent by the

control plane to update a switch in response to some event or change in network policy – should

only be considered from valid sources and when not tampered with by a third party.

Reliability: The control plane should be able to perform updates in the face of high rates of failures

including crashes of controllers and compromised controllers; in particular failures should be

detected and should not spread from one domain to another.

Practicality: Last but not least, a solution should be practical. In particular, performance should

support real-life deployments that scale to as many switches as possible across multiple domains,

while imposing minimal overhead on switches and (thus) sustaining high update rates. In that

light, a solution should support the replacement of failed controllers to ensure 24×7 deployment.

State of the art. Several approaches have tackled the problem of making the control plane

tolerate failures, yet these approaches either solely handle crash failures [7–9], or handle potentially

malicious behaviors [10, 11] without control plane authentication for the data plane, thus not fully

shielding the data plane against masquerading malicious controllers. In addition, most of these

approaches consider only single-domain setups.

Protocols for Byzantine fault tolerance (BFT) [12], a failure model subsuming crash failures,

provide safety and liveness guarantees [13, 14] up to a given threshold of faulty or malicious

participants, most often growing linearly with regards to the number of participants. Most work here

similarly considers single domain setups, putting little emphasis on handling failures to quickly yet

permanently retain trustworthiness and support cooperation across domains throughout successive

failures. Yet while application-specific solutions exist for performance-aware routing [15] or optimal

scheduling for network updates [16], we are not aware of any practical system providing a generic

protocol to securely enforce arbitrary application network updates across a faulty and asynchronous

distributed network environment. Crucially, from the point of view of practical adoption, existing

work introducing distributed resiliency techniques to address the network update problem treat

both switches and controllers as equal participants in the protocol despite important differences,

thus inducing prohibitive overhead on the switching fabric [11, 17].

Contributions. We present SERENE, a comprehensive protocol for secure and reliable network

updates in SD-WAN environments. SERENE ensures network update consistency amidst a dynamic
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control plane prone to malicious or faulty members, all the while exploiting parallelism in network

updates for practicality with minimal switch instrumentation. SERENE ensures consistency via an

update scheduler to enforce resilient ordering of dependent network updates. Security and reliability
are ensured via a Byzantine fault-tolerant consensus protocol with an adaptable threshold-based
authentication of updates leveraging distributed key generation [18]. SERENE is able to detect a

wide range of controller failures (e.g., benign crashes, muteness failures [19], creation of malicious

updates) thanks to a distributed ledger enabling network provenance [20]. To deal with the detected

failures, SERENE supports dynamic membership within the control plane, allowing controllers to

join a live control plane to replace and offset faulty controllers. Our mechanism for control plane

membership changes allows for a varying membership size for the control plane while allowing a

live adaptation of the threshold used in update authentication. In addition, we propose an alteration

to SERENE that slightly sacrifices network update setup time to reduce switches’ computation load.

Evaluation shows that our SERENE implementation, built off the Ryu controller framework [21]

and compatible with any controller application, performs with nominal overhead in data center-

sized topologies and improves performance when expanded to large network setups, e.g., multiple

data centers. Furthermore, our SERENE implementation is extensible to allow the use of any update

scheduler (e.g., Contra [15], Dionysus [16]) whose update policies can be specified in Ryu.

In summary, this paper makes the following contributions. We present

(1) an intuitive view of SERENE’s protocol for secure and reliable network updates across

multiple domains, while preserving consistency and practicality, that supports dynamic

membership in each domain’s control plane including detection and removal of faulty or

malicious controllers through the use of a per-domain distributed ledger;

(2) an algorithmic formalization of SERENE’s protocol, proofs that these achieve consistent

networks in the sense of event-linearizability [22], and a security analysis of the protocol;

(3) SERENE’s implementation on top of the Ryu runtime, using open-source components such

as the BFT-SMaRt [14] and Pairing Based Cryptography [23] libraries;

(4) an integration of SERENE into the OpenFlow discovery protocol (OFDP) [24] for secure data

plane (topology) discovery, and evaluate it over the Abilene network [25];

(5) an evaluation of SERENE in single and multiple domains, demonstrating its practicality.

SERENE supersedes our consistent secure practical controller (Cicero) work [26], which had

several limitations compared to SERENE. In short, SERENE integrates a distributed ledger to better

handle compromised controllers, and the present report further includes formalization and proofs

of correctness (event-linearizability) along with a security analysis, and provides secure topology

discovery through an integration with OFDP. All technical additions are empirically evaluated.

Roadmap. Section 2 presents motivating examples for secure and consistent network updates and

discusses the need for a comprehensive solution. Section 3 presents themain components of SERENE.

Section 4 presents the SERENE protocol that puts the components together. Section 5 presents the

formal properties of SERENE including pseudocode for algorithms, proofs of correctness, and a

security analysis. Section 6 describes our SERENE implementation. Section 7 presents a secure

topology discovery protocol using OFDP. Section 8 presents performance evaluation of SERENE in

a multi-data center deployment. Section 9 presents conclusions.

2 BACKGROUND
From a high level, network traffic is shaped by policies set by network administrators. Based on

an unbounded number of motivating factors (e.g., demand for network resources, application

bandwidth requirements, firewall rules, other network tenant requirements), it is impossible to
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Table 1. Examples of network changes with their desired behaviors, potential problems, and consistency
preconditions.

Example Network change Desired behavior Potential problems Update consistency
preconditions

Figure 1 Firewall rule changes Policy enforcement

Compromize or

loss of data

Aware of existing

firewall rules

Figure 2

Network hardware

maintenance

Loop and black

hole freedom

Packet loss

Aware of existing

flows

Figure 3 Bandwidth load

balancing

Loop, black hole and

congestion freedom

Over-provisioning of

link resources

Aware of existing

bandwidth usage

be 100% certain what drives network policies. For a network switch in a data plane, policies are

represented by forwarding rules that describe the store and forward behavior of network packets.

An individual switch has no understanding of a policy or how it affects the entire network. In

an SD-WAN environment, a control plane of one or more controllers enforces policies set by the

network administrator by translating policies into flow table entries installed on switches. As

network traffic arrives or as network policies change, updates to switch flow tables are needed

through network updates. Furthermore, the topology of the network may be dynamic as physical

cabling is changed and/or failures happen in switch or fabric hardware. These topology changes

may also result in network updates.

2.1 Definitions
A network policy consists of a high-level description of intent for network traffic. In other words, it

consists of desired packet handling behavior (e.g., shortest path routing, firewall rules). A network
flow is an active transfer of packets in the data plane identified by its source, target, and bandwidth

requirements. A route indicates the specific path that a network flow takes within the network;

multiple possible routes may exist for a network flow. Forwarding rules instruct a data plane switch

how to forward received packets in a flow. The data plane state consists of all forwarding rules

currently in use by all data plane switches. The control plane is thus responsible for maintaining

forwarding rules in the data plane state for all routes such that they comply with network policies

at all times, even during a change to the data plane state.

2.2 Challenges
In this section we outline several motivating examples that show not only the need for consistent

network updates performed in a secure and reliable manner, but also the need for practicality for

policy specification and scalability for deployment in large networks.

Consistency. Asynchrony in network updates can cause transient side effects that can significantly
affect switch resources such as overall network availability and/or violation of established network

policies. Since data plane switches do not coordinate themselves to ensure update consistency,

updates sent to switches in parallel may be applied in any order. While the OpenFlow message

layer, arguably the most widely used southbound API for network updates, has proposed bundled

updates [27] to provide transaction style updates to switches, it only supports these updates for a

single switch. It does not address inconsistencies that can occur due to updates that span multiple

switches. Additionally, OpenFlow scheduled bundles require synchronized clocks among switches
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Figure 1. (a) Depiction of the flows 𝑓1 in green and 𝑓2 in yellow. Unused network links are dashed. (b) The
network is intended to be modified by an update which respects the firewall rule in which no traffic should
flow from 𝑠1 to 𝑠3. The modification is made to send 𝑓1 and 𝑓2 both through 𝑠2 to 𝑠5. Updates are required at
𝑠1 and 𝑠2 to modify the flows, (c) but 𝑠1 applies the update before 𝑠2 which breaks the firewall rule.
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Figure 2. (a) Depiction of the flows 𝑓1 in green and 𝑓2 in yellow. (b) The link 𝑠4-𝑠5 fails and the network is
planned to be modified by an update to bypass this failure, but (c) 𝑠3 applies the update before 𝑠2 which
creates an unintended network loop.
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Figure 3. (a) Depiction of the flows 𝑓1 in green and 𝑓2 in yellow, (b) that are planned to be modified by an
update alleviating 𝑠3, (c) but the update is applied by 𝑠1 before it is applied by 𝑠2 which causes an unintended
over-provisioning of the 𝑠4-𝑠5 link.

to enforce the time at which bundles are applied but even the slightest clock skew may provoke

transient network behavior.

Table 1 summarizes several circumstances as well as potential problems that can arise if update

consistency is not provided. For each example, certain preconditions may also be needed by the

controller for ensuring update consistency. For instance, even a simple network policy change may

have unintended consequences when network updates are not consistent (cf. Figure 1). The process

of changing data plane state must also be free of transient effects caused by updates to multiple

data plane switches: loop and black hole freedom ensures no network loops or unintended drops of

network packets (cf. Figure 2), and congestion freedom ensures no over-provisioning of bandwidth

to network links (cf. Figure 3).

Security. When considering a control plane prone to faulty controllers, enforcing a consistent

ordering of network updates is not sufficient, those updates must only be applied when received

from authenticated controllers. Additionally, since a malicious controller masquerading as a switch
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can report incorrect link and switch state to the control plane [28], messages sent by switches must

also be authenticated.

OpenFlow enables endpoint authentication through TLS for both controllers and switches.

However, it has no mechanism to support a dynamic control plane such as group authentication,

e.g., to verify that an update has been emitted by any member of the control plane, or distributed

key generation to adapt the key of the group as the membership of the control plane changes.

Reliability. An authenticated controller that is faulty or compromised is still able to affect the

data plane state. Beyond security, a system for network updates must therefore remain correct in

the midst of failures and be able to detect when failures happen. A comprehensive solution for

secure and reliable network updates must be able to tolerate arbitrary and dynamic controller fault.

A faulty or malicious controller may corrupt or cause loss of network data, violate firewall rules,

or even leak network data to a malicious party. While solutions for reliable controllers have been

proposed, they either focus on resiliency (e.g., intrusion detection, intrusion prevention) for a

singleton controller [29, 30] or provide resiliency only in the presence of crash failures [7–9, 31].

Single controller solutions, proven to be single points of failures [32–36], must be avoided.

Many of the existing limitations when considering a faulty control plane arise from shortcomings

in the southbound API itself. For example, OpenFlow has a mechanism for the control plane to

inject arbitrary packets into the data plane (PACKET_OUT [37]). Using this, a malicious controller

can perform a denial of service attack against the data plane or to corrupt existing flows [38].

Practicality. The usefulness of a system is often evaluated on factors such as ease of use, per-

formance, and efficiency. Network policy specification must not only be straightforward, but also

flexible enough to allow arbitrary network policies. Several solutions for policy specification have

been proposed [39–41], but these are either control plane implementation specific, or do not ensure

update consistency or security. A practical systemmust allow a network administrator the flexibility

to use any solution desired while ensuring consistency, security, and reliability.

Furthermore, a system for managing changes to the data plane state must scale to a wide network

infrastructure consisting of multiple data centers with potentially thousands of switches [42, 43].

Existing work [16] shows that applying updates on commodity switches can require seconds

to complete. For data center workloads where flows start and complete in under a second [44],

applying updates quickly is vital to guarantee adequate network response time when changing

data plane state. However, responsiveness becomes even harder to ensure if updates are to be

applied in a consistent manner. In a naïve approach enforcing consistency, updates would be applied

sequentially (e.g., by updating 𝑠2, 𝑠1, 𝑠3, 𝑠4 in that order in Figure 1), increasing response time. Yet,

updates that do not depend on any others, (i.e., causally concurrent updates) may be applied in

parallel (e.g., updates to 𝑠3 and 𝑠4 in Figure 1). Identifying causally concurrent updates to apply in

parallel and improve response times is a challenge.

Finally, the data plane’s runtime load for updates must be low to ensure as many resources as

possible are used for the network’s core purpose; the transmission of network data.

2.3 Related Work
While the following solutions present methods for solving significant problems that arise in SD-

WAN deployments, none however provide the desirable guarantees of consistent network updates

in the midst of controller faults while remaining practical. Table 2 highlights the shortcomings of

these solutions that make them impractical in a realistic deployment.

Consistency. Additionally, there have been several works published in the realm of consistent

network updates. McClurg et al. [53] proposed network event structures (NES) to model constraints
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Table 2. Comparison of network management solutions considering different features related to consistency
[Cons], security [Sec], reliability [Rel], and practicality [Prac].
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↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
System/approach [Cons] [Sec] [Sec] [Rel] [Rel] [Prac] [Prac] [Prac]

Singleton controller Common [21, 45–47]

Singleton controller w/ TLS ✓ Common [21, 45–47]

ONOS [7] ✓ ✓ Deployed [48, 49]

ONOS [7] w/ TLS ✓ ✓ ✓ Deployed [48–51]

Ravana [9] ✓ Experimental Ryu extension

Botelho et al. [52] ✓ Experimental

MORPH [11] ✓ ✓ ✓ Experimental

RoSCo [22] ✓ ✓ ✓ ✓ ✓ Experimental Ryu extension

NES [53] ✓ Theoretical specification

Dionysus [16] ✓ Experimental

ez-Segway [54] ✓ Experimental Ryu extension

Optimal Order Updates [55] ✓ Theoretical specification

SERENE (this work) ✓ ✓ ✓ ✓ ✓ ✓ ✓ Experimental Ryu extension

on network updates. Jin et al. [16] propose Dionysus, a method for consistent updates using depen-

dence graphs with a performance optimization through dynamic scheduling. Nguyen et al. [54]

propose ez-Segway, a method providing consistent network updates though decentralization, push-

ing certain functionalities away from the centralized controller and into the switches themselves.

Header space analysis [56] and Minesweeper [57] both provide a mechanism for ensuring consis-

tency of network updates through formalism, however do not provide a means to ensure that those

updates are applied securely. Černỳ et al. [55] show that in some situations it may not be possible

to ensure consistent network updates in all cases. As such, it may be desirable to wait until the

packets for a particular flow are “drained” from the network prior to applying switch updates. They

define this behavior as packet-waits and provide an at-worst polynomial runtime called optimal
order updates which provides a mechanism for detecting such situations.

Security. While adding TLS for OpenFlow [58] may seem trivial, it requires overcoming addi-

tional complexities inherent in the protocol. For example, TLS uses certificates to authenticate

participants and encryption to ensure data confidentiality, but does not protect against a malicious

controller. Such a controller with a valid certificate has the ability to maliciously install a faulty

data plane state, e.g., crafting the undesired situations mentioned in Figure 1a–Figure 1c. Besides, as

distributed control plane membership changes, individual controller and switch certificates must be

redistributed to all participants. Solutions to address a malicious controller exist [29, 30], but focus

on protection in a single controller environment and do not address a replicated control plane.

Li et al. [10] proposed a method of devising a BFT control plane by assigning switches to multiple

controllers that participate in BFT agreement. However, this work focuses significantly on the

problem of “controller assignment in fault-tolerant SDN (CAFTS)” with little discussion on how

BFT is used to ensure protection from faults. MORPH [11] expands the solution of CAFTS with a

dynamic reassigner which allows for changes to the switch/controller assignment. Neither method

fully protects against malicious updates sent to the data plane; assuming that controllers participate
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in a BFT protocols for state machine replication is not enough to ensure the security of such updates.

Without control plane authentication, a malicious controller can make arbitrary updates to a data

plane switch. Note also that despite partitioning switches among controllers, MORPH, just like other

related approaches, does not support multiple update domains. DiffProv [59] and NetSight [60]

both provide a mechanism for network anomaly detection, but do not prevent inconsistencies.

Reliability. The area of fault-tolerant network updates has been explored inmany facets. ONOS [7]

and ONIX [8] provide a redundant control plane through a distributed data store, however their

primary focus is on tolerance of crash failures. Botelho et al. [52] also make use of a replicated

data store, following a crash-recovery model, for maintaining a consistent network state among a

replicated control plane built upon Floodlight [61]. Ravana [9], another protocol that only tolerates

crashes, differs slightly in its use of a distributed event queue rather than a distributed data store.

While Botelho et al. and Ravana ensure event ordering and prevent duplicate processing of events,

they do not provide a mechanism for authenticating updates sent to the data plane. RoSCo [22]

makes use of a BFT protocol to ensure event-linearizability, but does not support a dynamic control

plane and requires extensive key management for controller authentication.

Zhou et al. [20] propose a protocol for secure network provenance to provide forensic capabilities

for network policies in an environment consisting of malicious nodes. However, their protocol

requires instrumentation of switch nodes to participate in the protocol and does not provide fault

detection. In addition, it requires a network operator to check the provenance graph for anomalies.

DistBlockNet [62] presents a protocol for blockchain-based network policy management in an

Internet of things application, however requires that each switch authenticates each update with a

“verifying controller”. While updates are verified against a distributed blockchain (i.e., a distributed

ledger), DistBlockNet does not prevent a malicious controller from modifying the blockchain itself.

3 SERENE OVERVIEW Table 3. Basic SERENE notation.

Symbol Definition

𝑝𝑘𝑡 Network packet

𝑠 Switch process

𝑠𝑝𝑘 Switch public key

𝑠𝑠𝑘 Switch secret key

𝑡𝑝𝑘 Threshold public key

𝑒 Network event

𝑐 Controller process

𝑐𝑝𝑘 Controller public key

𝑐𝑠𝑘 Controller secret key

𝑐𝑠𝑠 Controller secret share

𝐶 Controller communication object

C Control plane communication group

𝑞 Minimum quorum size

𝐶𝐴 Aggregator controller

𝜋 Network state

𝑈 Network update

𝑢 Switch update

𝑟 Flow table rule

𝐷 Switch update dependence set

In this section, we detail our system threat model

and describe the mechanisms SERENE employs to

ensure consistency, security, and reliability while

being efficient enough for practical deployment in

a production data center. Descriptions contained in

this section make use of several symbols for con-

ciseness. A summary of these symbols is provided

in Table 3.

3.1 System and Threat Model
System model. The data plane is considered to

consist in a set of switches 𝑠𝑖 connected by links

encompassing multiple domains of operation. We

consider the control plane to consist in a dynamic set
of distributed controllers 𝑐 𝑗 . The current state of the

switches, or more specifically the data plane state
(essentially a set of flow table rules for switches) is

referred to also as the network state 𝜋 for brevity. A

change in data plane state generally involves a net-
work update 𝑈 consisting of a set of switch updates
{𝑢𝑘 }. A switch update 𝑢𝑘 (which is uniquely identifiable) may have a set of attributes associated

with it, abbreviated as a tuple of the form ⟨𝑠𝑘 , 𝑟𝑘 , 𝐷𝑘⟩. The first two indicate that switch update 𝑢𝑘
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consists of rule 𝑟𝑘 to be applied to switch 𝑠𝑘 . Where needed/used, the dependence set 𝐷𝑘 indicates a
set of switch updates that must be applied before 𝑢𝑘 , and is thus essentially used to capture depen-

dencies between switch updates as elaborated on shortly below. As for any (tuple of) attributes

associated with an object, we assume that attributes of a given switch update can be accessed

by dereferencing it – e.g., for a switch update 𝑢𝑘 above, 𝑢𝑘 .𝑟 denotes its rule (i.e., 𝑟𝑘 ), or 𝑢𝑘 .𝐷 its

dependence set (𝐷𝑘 ).

Switches and controllers communicate by sending and receiving messages on an asynchronous

network in which links between switches, controllers, and/or switches and controllers may fail.

Messages may take an arbitrary amount of time to reach switches and controllers.

Threat model. We consider a failure/threat model where a controller may fail or become malicious

at any time. Such a controller may eavesdrop on communication between switches in the data

plane, between other controllers in the control plane, and/or between switches and controllers.

We also consider that a faulty/malicious controller can modify the contents of any message sent

between controllers and/or between controllers and switches. For example, such a controller may

send any arbitrary update to a switch, send an arbitrary event to another controller, or prevent an

event and/or update from being received by a controller and/or switch.

While a controller may fail or become malicious we assume that switches always remain cor-

rect. Protection of the data plane is the topic of ongoing research [63] through analysis of flow

behavior [64], authentication [65], and intrusion detection [66]. In addition host endpoints can

protect data packets through existing secure transport protocols such as TLS. The topic of utilizing

SDN as a means for protecting against malicious hosts, (i.e., utilizing DDoS [67–69] or man-in-the-

middle [70]) attacks is subject to ongoing research. We also assume that a faulty/malicious controller

can only view but not modify the contents of data sent between switches. Furthermore, in relation

to the cryptographic mechanisms employed by our solution, we assume their implementation is

sound, that private keys remain private and that with the exception of negligible probability an

adversary cannot sign a message for a member where the private key is not known.

3.2 Consistency

Figure 4. The update scheduler deter-
mines that there are no dependencies
between the updates for the green
(dashed) set of switches and the up-
dates for the red (dotted) set.

Consistent network updates are accomplished by pairing

an update scheduler that establishes the order in which up-

dates should be performed, and a blocking update application

scheme that relies on switch acknowledgements.

Update scheduler. An update scheduler determines a sched-

ule that enforces the sequential specification of registered

network policies by denoting a set𝑈 of switch updates includ-

ing their respective dependencies 𝐷 as defined above. That

is, for any given switch update 𝑢 = ⟨𝑠, 𝑟, 𝐷⟩ part of a network
update𝑈 , 𝐷 refers to the set of switch updates that must be applied before 𝑢 can be applied to 𝑠 .

Figure 1 depicts an example which requires a set of updates for switches 𝑠1, 𝑠2, 𝑠3, and 𝑠4. To ensure

update consistency, an update scheduler would require the update at 𝑠2 to be applied first and, only

then, the remaining updates can be performed in any order. Figure 4 depicts another example where

a set of network updates require modifications to the switches highlighted with green dashes and

red dots. While the updates within these two sets of switches may require ordering, modifications

across sets involve a disjoint set of switches and can be performed in any order.

Update schedulers have been extensively discussed [16, 55, 71, 72]. We employ a simple update

scheduler implemented using any of these approaches. We discuss in Section 3.5 how SERENE

exploits it to perform updates to switches in parallel while still preserving consistency.
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In addition we assume controller applications are deterministic. As a result, when policies allow

for multiple rules that may result in differing routes, all controllers must use the same heuristic

for choosing rules to update. For example, if a policy requires that data plane traffic be routed

using the shortest path yet there exists multiple shortest paths in the network, all controllers would

deterministically choose the same route resulting in the same set of required updates to switches.

Existing solutions that focus on crash-only tolerance follow a similar assumption [7–9, 31].

Switch acknowledgements. While the update scheduler determines dependencies between updates,

it does not handle execution. To ensure consistent execution, controllers expect to receive update

acknowledgements from switches every time they apply an update. For every switch update

𝑢 = ⟨𝑠, 𝑟, 𝐷⟩ with dependence set 𝐷 proposed by the update scheduler, a controller only sends the

update 𝑢 to the data plane once it receives the acknowledgements for every update in 𝐷 .

3.3 Security
At their core, secure network updates require switches to apply updates only from a trusted

controller. SERENE fulfills this requirement by authenticating both events, that may induce updates,

and updates themselves such that only those emitted by control plane members are considered by

switches. SERENE further eases deployment of a dynamic control plane by ensuring that switches

only need to store a single public key for the control plane, handed out when a switch is setup.

Event source PKI – event authentication. A change in data plane state is assumed to be invoked as

the direct result of some event, whether it is the result of a switch detecting an unroutable packet

(e.g., mismatch in flow table rules), a change in network policy, a failure of network hardware,

or some other factor. Events received by the control plane require validation to ensure that they

originated from a reliable source and that they have not been tampered with during transit. To this

end, SERENE makes use of a public key infrastructure (PKI) system where each event source is

assigned a public/private key pair. Event sources sign each event they generate with their private

key; controllers verify the signature of each event they receive against their respective public key.

Controller threshold key – update authentication. Each controller signs the updates they emit

so switches can verify the origin of the updates they receive. The strawman approach consists

of controllers being assigned different pairs of public/private keys for signing updates. However,

managing all the public keys on all the switches rapidly becomes cumbersome as controllers may

be added to and/or removed from the control plane. Moreover, the limited physical resources of

switches must be preserved (cf. Section 3.5)

To this end, we employ a system based on threshold cryptography [73, 74]. In a (𝑡, 𝑛)-threshold
signature scheme, a single public/private key pair is generated for the entire control plane. The

public key is distributed to each switch and each controller obtains a share of the associated private

key used for signing updates thanks to Shamir secret sharing [75]. To verify an update, the signature

shares received from controllers are combined with an aggregation function to create a signature

that is verified against the single public key. The aggregated signature can only be validated if

correctly signed by at least 𝑡 out of 𝑛 controllers, thus any 𝑡 − 1 controllers, with the exception of

negligible probability, cannot on their own construct a signature that can be verified against the

control plane public key. The choice of 𝑡 impacts SERENE’s reliability as presented in Section 3.4.

Controller DKG – dynamic unique controller key. Using threshold cryptography and secret sharing
for update verification establishes a method for secure updates in a dynamic distributed control

plane. However, distribution of private key shares when controller group membership changes

creates a significant complication: no single controller should ever have knowledge of a private key

share other than its own. Verifiable secret sharing (VSS) [76] is a method in which a designated
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dealer distributes shares of a secret to all participating members. VSS differs from standard secret

sharing in that clients can construct a valid share even if the dealer is malicious. These shares can

be used in a (𝑡, 𝑛)-threshold signature scheme to create message signatures that are only validated

if at least 𝑡 members correctly sign the message with their shared secret. Naïvely, one could employ

such a system to distribute private key shares to controllers when the control plane membership

changes. However, requiring the setup and maintenance of such a system is impractical as the VSS

dealer is a single point of failure for confidentiality.

We instead employ a system based on distributed key generation (DKG) [77] that expands on the

concept of VSS to an environment where there is no trusted dealer. In short, each controller acts as a

sub-dealer, creating and distributing private key sub-shares to each other controller. The sub-shares

are then aggregated to create the private key share for the controller. DKG uses homomorphic

commitments to ensure that the corresponding public key for the group is known by all controllers,

but except for negligible probability, no one controller can create a signature that is successfully

validated by the public key. Once generated, this public key must be shared to all switches, which

is done when switches are setup. Future instances of DKG ensure that new shares can be generated

for the control plane as group membership changes without changing the public key.

3.4 Reliability
While an update from a controller can be easily validated using signatures, trust in a single controller

is not enough when considering malicious faults (e.g., a compromised controller can sign malicious

messages with a valid signature). SERENE increases the reliability of the control plane by supporting

a dynamic distributed control plane where all controllers monitor each others to detect and remove

failed members. SERENE uses event agreement between controllers as well as update agreement

verifiable by the data plane to ensure correct behavior of the control plane, assuming a quorum

majority of correct controllers at all time. By detecting and removing failed controllers, SERENE

remains reliable in the face of a dynamic adversary. SERENE can detect failures ranging from simple

crashes thanks to heartbeats, to more complex and pernicious failures thanks to a distributed ledger.

Atomic broadcast – event agreement. Once an event is signed, the event source sends it to all known
controllers in the control plane. A controller, upon receiving an event and verifying its signature,

proposes agreement on the event with all other controllers through an established agreement

protocol to ensure a total order of processed events. Upon deciding on the event ordering with other

controllers in the control plane, each controller independently responds to the event with network

update(s). A switch only applies an update once received from a quorum of trusted controllers.

We use an atomic broadcast [78] (i.e., consensus) to ensure each controller has a consistent view

of the data plane state. Controllers use a PKI system to validate messages sent with the atomic

broadcast. We employ a dynamic control plane membership protocol to ensure flexibility of the

control plane. The current communication group of controllers is indicated as C = {𝐶1, . . . ,𝐶 𝑗 } of
controller communication objects. Each 𝐶 = ⟨𝑐, 𝑐𝑝𝑘, 𝑖𝑑⟩ contains the controller process, its public
key for message validation, and the controller process identifier within the communication group.

Threshold signatures – update agreement. Controllers do not need to explicitly agree on an update

using the atomic broadcast since they already agree on the events and their order. Rather, it is

sufficient for switches to only apply updates with valid signatures (i.e., from controllers) that

are emitted from a quorum of verified controllers. As explained in Section 3.3, SERENE uses a

(𝑡, 𝑛)-threshold signature scheme for controller authentication. We set 𝑡 to the controller quorum

size necessary to apply an update, i.e., 𝑡 = 2 ×
⌊
𝑛−1
3

⌋
+ 1 and represent this quorum size as 𝑞 for

brevity. Note that to tolerate a single failure, there must be at least 4 members in the control plane

(i.e., 𝑛 = 3𝑓 + 1 with 𝑓 ≥ 1). Thus, we assume SERENE never runs on control planes with 𝑛 < 4.
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Heartbeats – crash detection. SERENE uses a failure detector (FD) that relies on heartbeat messages

to detect controller crashes (due e.g., to power loss). Heartbeats are periodically broadcast within

the control plane; a controller is suspected of failure when other controllers do not receive its

heartbeats for a given amount of time. Because of this upper bound in detection time, the FD

provides strong completeness and weak accuracy for crashes (i.e., the detector outputs no false

negatives but may output false positives [79]). Weak accuracy implies that a suspected controller

may be prematurely removed from the control plane (e.g., if a controller is too slow), which only

affects the system’s liveness. Since SERENE supports a dynamic control plane, prematurely removed

controllers may be re-added later (cf. Section 4.3).

Distributed ledger – beyond crash detection. Faulty controllers may issue incorrect updates, or no

update at all, as a response to an event they received. Such incorrect behaviors are undetected by

the heartbeat FD since it can only suspect slow or crashed controllers of failure. To complement

the heartbeat FD, SERENE includes a distributed ledger per domain to detect a wider range of

controller misbehavior which may affect the safety (e.g., inconsistent updates, invalid updates)

or the liveness (e.g., muteness failures [19]) of the system. In essence, controllers hold each other

accountable [80, 81] by storing in the ledger, to further audit, the (1) events received and (2) events

decided by the control plane, as well as (3) every update issued by a controller to the data plane

and the matching (4) update acknowledgments by switches. Events are stored in the ledger twice —

first when they are received by controllers, then upon decision by the atomic broadcast — to detect

those that are rejected. Following event decision, the corresponding update(s) are also recorded,

using a scheme we describe further, alongside their acknowledgments from the data plane to detect

irregularities such as updates signed by a minority of controllers (more examples in Section 4.4).

A strawman design would entirely rely on an external (permissioned) ledger [82–84] to record

events and updates. However, these ledgers require a round of consensus for each recorded item

to ensure controllers store the same view of the ledger. As we show further, the cost incurred by

these extra rounds of consensus is unnecessary and we can design a more efficient, thus practical,

solution. Instead of using an external ledger, we propose to tightly couple the workings of SERENE’s

distributed ledger with SERENE’s core protocol for network updates as described in the following.

In SERENE, recording an event 𝑒 in the ledger is performed locally by each controller once

the atomic broadcast of 𝑒 , used for consistency, completes. Hence, recording events comes at no

additional communication cost. Since controllers can equivocate [81, 85], recording updates requires

extra steps and must involve the data plane. Faulty controllers may selectively omit messages or lie

to preserve an appearance of correct behavior by, for instance, issuing deceitful updates to the data

plane yet advertise correct ones to the control plane. As such, updates must only be recorded if

they have been sent to the data plane. To that end, SERENE leverages the assumed correctness of

switches by making them echo the signed updates they receive back to the control plane. Upon

reception of an echoed update, each controller directly records it in its local ledger, thus avoiding

the cost of consensus of an external ledger. As long as the control plane contains at least one

correct member that received an event, incorrect updates for that event are ensured to be recorded.

Recorded updates can then be audited, either automatically (cf. Section 4.4) or manually by network

administrators, and controllers emitting incorrect updates can be detected.

3.5 Practicality
Amidst consistency and security, for a solution to be feasible in a real data center deployment it

must also be practical. SERENE provides an effective solution by exploiting intra- and inter-domain

update parallelism, and enabling efficient signature aggregation to alleviate switches runtimes.
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Update parallelism – intra-domain parallelism. Using an update scheduler (cf. Section 3.2) allows

SERENE to exploit parallelism in switch updates. Given a set of switch updates and their corre-

sponding update dependencies determined by the update scheduler, two updates 𝑢𝑖 and 𝑢 𝑗 can be

applied in parallel if their dependencies 𝐷𝑖 and 𝐷 𝑗 are disjoint, i.e., 𝐷𝑖 ∩ 𝐷 𝑗 = ∅.

Update domains – inter-domain parallelism. SERENE employs an atomic broadcast (cf. Section 3.4)

to ensure a consistent ordering of events processed by the control plane. The responsiveness

of such agreement protocols unfortunately greatly deteriorates as the size of the control plane

increases, hence creating a trade-off between fault tolerance and performance. Additionally, in large

networks such as a collection of data centers, this responsiveness is further impacted by having a

geographically dispersed control plane. This distribution is initially set to minimize latency between

local control and data planes, but ultimately increases latency within the global control plane.

As such, SERENE allows the division of network resources into domains, each as its own separate

instance of the protocol functioning on disjoint control and data planes, e.g., separate IP subnetworks.

Domains may rely on separate update schedulers, agreement within communication groups, and

control plane public keys. The goal of this division is to enable data plane events that involve

updates to switches fully contained within the same domain to be processed independently of

other such events in other domains, i.e., in parallel. Events that require updates spanning multiple

domains must however be handled in a consistent manner by the control plane as a whole.

SERENE avoids the need for inter-domain agreement through assumptions on setup and global
domain policies. First, we assume operators of different domains trust each other, e.g., domains

are sub-domains of the same institution. Doing so prevents conflicting policies from being set

across domains, and prevents unexpected events from being forwarded across domains. Domain

isolation thus offers the security that a, potentially faulty, domain’s control plane cannot update

another domain’s data plane, but it may affect flows with a remote origin crossing the data plane it

is responsible for. Second, we assume the global domain policies are agreed upon before network

deployment and set manually by system administrators. This provides the advantage that each

domain’s control plane is able to determine which domains require updates based on a received

event without collaboration with other domains. A controller receiving an event that involves

updates to multiple domains merely forwards the event to the control plane of each affected domain.

This does mean that any update to a global domain policy requires manual updates to all controllers

in the affected domains.

Control 
Plane

Data
Plane

Domain BDomain A
s1

s2
s3 s4

A s1, s2

B s3, s4

A s1, s2

B s3, s4

Figure 5. Depiction of a two domain network
where an event generated by switch 𝑠1 and sent to
its local domain control plane. The control plane
then uses global domain policies to determine
that network updates involve domains 𝐴 and 𝐵.
𝐴’s control plane forwards the event to 𝐵’s and
both domains update their local switches to set
flow tables rules.

For example, consider the flow outlined in Figure 5

where an event generated by switch 𝑠1 in domain

𝐴 needs a route to 𝑠4 to be established. Using the

global domain policies, the controller in 𝐴 that re-

ceives the event determines that it requires updates

to both domain 𝐴 and 𝐵, and forwards the event to

the control plane of domain 𝐵. Both domains process

the event in parallel and update the switches within

their domain accordingly, setting the flow table rules

of switches to establish a flow from 𝑠1 to 𝑠4.

This brings out some unique challenges, specifi-

cally in relation to membership changes in the con-

trol plane of each domain. As we will detail with the

SERENE protocol in Section 4, events — be it those

that originate from the data plane for link events or

from the control plane for membership changes —
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are not processed sequentially by the control plane. If an event sent across a domain is received by

a controller participating in a membership change, this event must be queued and processed after

the completion of the membership change operation. In our implementation of SERENE described

in Section 6, we use the BFT-SMaRt [14] library to ensure that events received while processing

other operations are properly queued and not dropped.

While SERENE allows for division of the network into domains, for SERENE to inter-operate

between domains, each must remain in control of the network administrator. Doing so requires

no need for negotiation between network service providers or autonomous systems (ASs). This

assumption simplifies our requirements for cross-domain routing policies as they can be set

globally as viewed by the network administrator. Negotiation of policies between physical sites and

multiple network administrators for policies is assumed to be possible due to the fact that multiple

administrators of networks across multiple domains are within the same company/organization. In

other words, we assume that administration and communication between domains is trusted. This

avoids gaps in the network where data plane traffic may be handled by an untrusted third party

and avoids the need for network tunneling between third party providers. Rules for cross domain

policies can be set on a global level due to centralized control by the network administration team.

In addition, the setup of new domains requires planning by system administrators to establish the

global domain policies appropriately.We assume that this is handled offline by system administrators

and set in the control plane before domain deployment.

Update signature aggregation. To verify an update, the signature shares from each controller

must be collected and aggregated prior to verification against the threshold public key. Putting

this responsibility on switches can put unnecessary load on their hardware. SERENE thus presents

two approaches for signature aggregation: (1) switch aggregation in which each individual switch

is responsible for collecting and aggregating update signatures, and (2) controller aggregation in

which a single designated “aggregator” controller, 𝐶𝐴, collects and aggregates signatures.

Each approach comes with its own trade-offs. While switch aggregation requires additional

resources and instrumentation on switches for storing and aggregating signatures, controller

aggregation increases latency since switches must wait for the aggregator to collect and aggregate

responses. Furthermore, controller aggregation must be able to handle detection of a failed or

malicious aggregator. Our evaluation in Section 8 further quantifies the trade-offs of each approach.

4 SERENE PROTOCOL
In this section, we show how the components depicted in Section 3 form a protocol with: (1) con-

sistent, secure and reliable network updates, (2) signature aggregation, (3) dynamic membership,

and (4) failure detection. We further comment on the guarantees of the protocol in Section 5.

4.1 Core Update Protocol
The SERENE protocol is composed of two independent routines: switch runtime and controller

runtime. The controller runtime can further be broken down into the handling of events within

and across multiple domains.

Switch protocol. Figure 6 depicts the update processes for a switch when it receives either a

packet from the data plane (Figure 6a) or an update from the control plane (Figure 6b).

Under normal operation, a switch uses the flow table rules enforcing network policies to store

and forward packets in the data plane. Upon receiving a packet that does not match any rule, a

switch creates, signs, and sends an event indicating the mismatch to all controllers of its domain.

Upon receiving a network update from the control plane, the switch immediately signs it and

echoes it back to the control plane so controllers can record all updates in the distributed ledger.
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(a) Switch forwarding process. (b) Switch update process.

Figure 6. Flow charts describing the processes of a switch (a) handling incoming packets on the data plane
and (b) handling updates received from the control plane.

The switch then stores the received message, containing an update and a controller signature, until

the switch receives a quorum majority of identical updates from control plane members. Once

enough messages are received, using the threshold signature aggregation function, the switch

aggregates the signatures for the update and verifies the resulting signature against the public key

for the control plane. The update is then either applied or ignored, depending on the validity of

the signature. Finally, the switch sends a signed acknowledgement to all members of the domain

control plane to alert them of the network update application.

Controller protocol. Figure 7 depicts the process for a controller when it receives an event (Fig-

ure 7a) or when agreement is reached on the ordering of events (Figure 7d).

Under normal operations controllers for a domain of switches are idle waiting to receive signed

events. Upon receiving an event, the source of the event is verified and the event is either broadcast

to all members of the domain’s control plane or ignored if the event was previously processed or

the event source cannot be verified.

Upon delivery of a broadcast event, each member of the control plane records the event in their

local ledger and independently determines the necessary network updates and dependency sets in

response to the event using the established network policies and the update scheduler. Network

updates are signed with the controller’s private key share. Network updates for disjoint dependency

sets are processed in parallel with network updates having no dependencies being immediately

sent to corresponding switch(es). As verified acknowledgements for applied updates are received,

these updates are removed from dependency sets and additional updates with empty dependency

sets sent, in parallel, to switch(es). Since switches are assumed to be non-faulty, these received

acknowledgements ensure forward progress in event processing despite loops in the protocol flow.

In parallel, every signed update echoed by a switch is recorded in the ledger as depicted in Figure 7b.

Inter-domain updates. If, thanks to the global domain policies, a controller determines that an

event affects multiple domains, it forwards the event to a controller in each affected domain. The

receiving controllers broadcast the event to all other controllers of their respective domain as with

any validated event. To select a valid recipient, each controller maintains a set of active controllers

in each other domain. This list is updated every time a controller is added or removed to/from any

other domain’s control plane (cf. Section 4.3). Furthermore, to prevent never-ending dissemination
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(a) Controller receive event process.

(b) Controller receive echoed update process.

(c) Controller ledger parsing process.

(d) Controller update process.

(e) Aggregator controller process.

Figure 7. Flow charts for controller’s processes (a) handling incoming events, (b) handling echoed updates
sent from the data plane, (c) detecting ledger inconsistencies, (d) handling updates to be sent to the data
plane, and (e) aggregating updates from other controllers.

of the event, a forwarded event is tagged as such to indicate it should not be further forwarded to

other domains and only be processed locally.

4.2 Controller Aggregation
The SERENE protocol outlined in Section 4.1 specifically focuses on switches aggregating signatures.

Optionally, controller aggregation may be used in which a controller is assigned to be the aggregator

for both receiving events from switches and collecting (to aggregate) signed updates.

Aggregation process. The process for controller aggregation is depicted in Figure 7e. Controllers,

instead of sending signed updates to switches, send them to the designated aggregator. The aggre-

gator collects signed switch updates, aggregates the signatures once a quorum has been received,

and sends the update along with the aggregated signature to their respective switch. A switch

receiving aggregated signatures merely verifies the update’s signature against the public key of the

control plane and either applies or ignores the update. At any time, a controller may become faulty,

including the aggregator. As such, switches must broadcast signed events to all controllers even

when controller aggregation is used.

Aggregator selection. All controllers for a domain maintain a representation of the control plane

communication group containing each controller’s identifier, public key, and any information
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(a) Controller bootstrapping.

(b) New controller process.

(c) Controller membership consensus.

Figure 8. Flow charts for controller membership change: (a) and (b) show the processes for the bootstrap
controller and the joining controller respectively, and (c) shows the controller process when a membership
change consensus is reached.

needed for communication (e.g., IP address, port). As new controllers are added (cf. Section 4.3),

they are given the next highest unused identifier. Identifiers are never reused, even when controllers

leave the group. At any given time, the aggregator can be determined as the controller with the

lowest identifier. Since all controllers in the domain have the same view of the communication

group, this provides stability in the selection. Once an aggregator is determined, the control plane

members inform switches by sending a signed message.

4.3 Control Plane Membership Changes
The process for a domain’s control plane membership change is depicted in Figure 8. Due to the

potential change in quorum size, both add and remove operations require the distribution of new

private key shares.

General process. The SERENE protocol ensures that no events are processed until after the

membership change has completed, which prevents control plane members from having to keep old

and new shares concurrently. A phase value records the current iteration of membership change.

The phase value is incremented with each controller addition or removal. To ensure consistency

in control plane state, controllers are added and removed sequentially. Each step in control plane

modification increments the phase. Events broadcast to all domain controllers are tagged with the

current phase. Thanks to the atomic broadcast, controllers queue events received during a change

in control plane membership and only broadcast and treat them after the phase has changed.

Controller addition. The procedure to add a controller to the control plane is as follows: (i) public

keys for event originators and existing control plane members are distributed to the new controller

alongside its identifier; (ii) the new controller is added to the control plane communication group

though consensus proposed by the bootstrap controller; (iii) DKG is executed to distribute signature

shares to the new controller group reflecting the new quorum size and ensuring that the threshold

public key remains the same; (iv) the data plane state and both local network policies from the

control plane and global domain policies are sent to the new controller.

SERENE uses a trusted bootstrap controller to manage additions to the control plane. It is the

only control plane member that can initiate consensus rounds to add new controllers.
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The final step requires updating all other domains to indicate the new controller as a valid

recipient of forwarded events. Here, the bootstrap controller generates and signs an event containing

the new controller’s communication information and forwards this to a member of each other

domain. Each receiving domain, in parallel, processes the event as any other network event (e.g.,

atomically broadcasts the event to all members of the local domain). However, instead of sending

network updates, a controller handles this event by updating its view of the sender’s control plane.

Controller removal. The procedure to remove a controller 𝑐 from the control plane is as follows:

(i) 𝑐 is removed from the control plane communication group; (ii) DKG is executed to distribute

signature shares to the controller group reflecting the new quorum size and ensuring that the

threshold public key remains the same; (iii) switches are (potentially) assigned a new aggregator.

Removing the controller from the communication group is performed via a round of consensus

proposed by a member that detects that the member should be removed.

The final step requires updating all other domains to indicate the removed controller is no longer

a valid recipient of forwarded events. As when adding a controller, an event is sent to a controller

of each other domain. The event is in turn processed in parallel by each domain’s control plane

where each controller updates its view of the sender’s control plane.

Overhead. The overhead of membership change involves an instance of atomic broadcast, for

the control plane to agree on the membership change event, and an instance of DKG to distribute

new key shares to the new control plane communication group. Our implementation uses BFT-

SMaRt [14] for group member management which is based off established literature [86, 87]. While

a faulty/malicious bootstrap controller send repeated membership change messages, additional

policies such as blacklists can be used to prevent repeated leaving/rejoining.

4.4 Controller Failure Detection
A controller suspected of failure, either by the heartbeat FD or after auditing the distributed ledger,

is removed from the control plane as described in Section 4.3. Failures can optionally be reported to

network administrators to help find the root cause of the failure. Thanks to the ledger, reports can

contain the type of failure detected and all relevant information (e.g., events, update signatures).

The heartbeat FD functions in a straightforward manner: controllers set timeouts for heartbeat

messages and a crash is detected when its associated timeout is reached. As for the distributed

ledger, it is periodically audited by all controllers following the failure detection policies that express

suspicious controller behaviors (cf. Figure 7c). Example of such suspicious behaviors include:

(1) When an incorrect event is received, i.e., the ledger contains a record for a received event but

not a matching record for the decided event once the atomic broadcast is completed.

(2) Muteness failure [19]: when a controller broadcasts hearbeats but does not send updates, i.e.,

the ledger contains no update signed by this controller;

(3) When less than a quorum number of controllers send an update, i.e., the ledger contains

between 1 and 𝑡 − 1 signatures from the (𝑡, 𝑛)-threshold key for an update;

(4) When a controller does not sign some updates or does so in the wrong order, i.e., the ledger

is missing some update signatures or contains a signed update before its dependencies.

The audit proper is performed on a snapshot of the ledger rather than on the ledger itself to

avoid considering recent events and updates that may still be under deployment as this could lead

to false positives in the detection. Once the detection policies have been executed on a snapshot, a

new snapshot is taken and all the audited content may be discarded to reduce storage footprint.
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5 SERENE PROTOCOL FORMALIZATION
In this sectionwe present the pseudocode for SERENE and prove it provides event-linearizability [22]:
the execution of SERENE is indistinguishable from the correct sequential execution of a single

controller enforcing network updates. We further analyze the security of SERENE.

5.1 Algorithms
The pseudocode for SERENE’s switch runtime is shown in Algorithm 1. The algorithm describes

the handling of received packets and the transmission of events to the control plane. It also

describes the details of processing switch updates, quorum authentication, and finally the sending

of acknowledgements. For the purposes of the distributed ledger, switch updates must be echoed

back to the control plane which is indicated through the sending of echo messages in the algorithm.

The controller implementation consists of multiple algorithms. Algorithm 2 describes the con-

troller runtime for receiving events, event agreement, and sending of switch updates. Additional

functional description needed for controller aggregation is presented in Algorithm 3. Control

plane membership change is shown in Algorithm 4. The algorithm describes the necessary use

of agreement needed for adding and removing a member from the control plane communication

group as well as generating new secret key shares using DKG. Finally, Algorithm 5 presents the

controller functionality used for recording entries into the distributed ledger. At a periodic interval,

controller processes use the entries recorded in the ledger to detect failures following established

policies. This failure detection is presented in Algorithm 6. The failure detection policies presented

in Section 4.4 are implemented in Algorithm 6.

In addition to the notation summarized in Table 3, the algorithms make use of several additional

symbols summarized in Table 4 while a summary of message types is presented in Table 5. Note that

we use ⊕ to denote concatenation to a sequence of an element or another sequence. Analogously

we use ⊖ for removing from a sequence an element or a set of elements, in any position. Similarly

we use ∈ to assert whether an element is contained in a sequence in any position.

5.2 Interfaces
The algorithms use the following application interfaces where functions are prefixed with _:

Rule installation: _apply(𝑟 ), applies rule 𝑟 to the switch runtime.

Signature creation: _sign(𝑚𝑠𝑔, 𝑠𝑘), a function to sign a message (𝑚𝑠𝑔) with given key (𝑠𝑘).

Signature verification: _verifySig(𝑚𝑠𝑔, 𝑠𝑖𝑔, 𝑝𝑘), a function to verify a signature (𝑠𝑖𝑔) for the given
message (𝑚𝑠𝑔) using the public key (𝑝𝑘).

Signature aggregation: _aggSig({𝑠𝑖𝑔1, . . .}), a function to aggregate the signature shares.

Event generation: _generateEventData(𝑝𝑘𝑡) = 𝑒 , creates the necessary event data to be sent to

the controller given packet data 𝑝𝑘𝑡 .

Controller application invocation: _handleEvent(𝜋, 𝑒), returns the network state 𝜋 ′ to be ap-

plied in “response” to an event 𝑒 in state 𝜋 .

Update scheduler: _scheduleUpdates(𝜋1, 𝜋2), returns 𝑈 , a network update (i.e., a set of switch

updates) to transition the data plane state from state 𝜋1 to 𝜋2.

Update domain: _updateDomain(𝑒), a function that uses the update scheduler and the global

domain policies to determine the update domain for an input event.

Reliable unicast: _send(𝑚𝑠𝑔), used to send message𝑚𝑠𝑔 to a single target. Once a message is

received, the callback _receive(𝑚𝑠𝑔) is invoked on the target.
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Table 4. Algorithm and proof notation.

Symbol Definition

Switch-specific notation

𝑅 Map record of previously received updates

𝑇 Map of recorded switch update signature shares

Controller-specific notation

𝐻 Map history of previously received events and

their corresponding network updates

𝑃 Sequence of pending network updates

𝐴 Map record of aggregated updates

𝑝ℎ Current phase of controller membership

𝑖𝑑 Controller identifier

Distributed ledger notation

𝐴𝐶𝐾 Set of received acknowledgements

𝐿 Local version of the distributed ledger

𝐿𝑆 Ledger snapshot used for the detection

𝑡𝐿 Failure detection interval

𝑁 Map of network updates sent by each controller

Table 5. Algorithm message types.

Symbol Definition

EV Event

UPD Switch update

ACK Acknowledgement

BOOT Bootstrap new control plane member

ADD Add control plane member

LEAVE Leave the control plane

REM Remove control plane member

SETCA Change aggregator controller

ECH Echo of received switch update

EVR Ledger entry of event received

EVD Ledger entry of event decided

Agreement: _propose({𝑐1, . . .},𝑚𝑠𝑔), used by a set of controllers {𝑐1, . . .}, to initiate an instance

of consensus, by proposing message 𝑚𝑠𝑔. Once consensus has been reached, controllers

receive the outcome through the callback _decide({𝑐1, . . .},𝑚𝑠𝑔).
Distributed key generation (DKG): _DKGStart(C, 𝑝ℎ, 𝑠ℎ), performs DKG using the communi-

cation group C in phase 𝑝ℎ . The input share is 𝑠ℎ which ensures that the threshold key

remains the same. All participation controllers receive the outcome of DKG through the call-

back _DKGComplete(𝑠ℎ) which receives as input share 𝑠ℎ , a new share for each participating

node, that collectively verifies to threshold public key. If a member of the communication

group does not have an existing share, it does not participate in the initial rounds of DKG,

however it will still receive a share through the callback _DKGComplete(𝑠ℎ). DKG maintains

a phase value to ensure that previous protocol messages are ignored once instance of the

protocol completes. Controllers keep track of the current phase an input this to each instance

of the protocol initiated by _DKGStart(C, 𝑝ℎ, 𝑠ℎ).
Heartbeat failure detector: _detectHBFailure(𝑐 ) invoked as a callback when controller 𝑐 is sus-

pected of failure by the heartbeat FD executed on the detecting controller.

5.3 Computational Model and Consistency Definitions
Here we present the computation model of SERENE, proofs of correctness, and discuss robustness

of the SERENE protocol. In addition to the notation presented in Table 3, the proofs and discussion

make use of symbols shown in Table 6. We consider a full communication model in which each

controller process may send messages to, and receive messages from, any other controller process

or any switch. Switches communicate with each other solely for sending data plane traffic.

Recall the notion of a network state which intuitively specifies the state of the flow tables in data

plane switches for forwarding packets across the network. A network state 𝜋 specifies the state

(of flow tables) of each switch in the data plane. An event is initiated by a switch or a controller
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Algorithm 1 for switch 𝑠𝑖 with public key 𝑠𝑝𝑘𝑖 , secret key 𝑠𝑠𝑘𝑖 , and control plane threshold public

key 𝑡𝑝𝑘 .

1: C ⊲ Current control plane group
2: 𝐶𝐴 ← ⊥ ⊲ Current aggregator
3: 𝑅 ← [] ⊲ Record of received switch updates
4: 𝑇 ← [] ⊲ Received update signature shares
5: 𝑞 ← 2 ×

⌊
𝑛−1
3

⌋
+ 1 ⊲ Quorum size

6: upon _receive(𝑝𝑘𝑡 ) on incoming link do
7: if no flow table match then
8: sendEvent(𝑝𝑘𝑡 )
9: else
10: forward 𝑝𝑘𝑡 along data plane

11: upon _receive(UPD∥𝑢 ∥𝑠𝑖𝑔 ) from controller

𝑐 𝑗 | 𝐶 𝑗 = ⟨𝑐 𝑗 , . . .⟩ ∈ C do
12: 𝑠𝑠𝑖𝑔𝑖 ← _sign(𝑢 ∥𝑠𝑖𝑔 ∥𝑐 𝑗 , 𝑠𝑠𝑘𝑖 )
13: for each ⟨𝑐𝑙 , . . .⟩ ∈ C do
14: _send(ECH∥𝑢 ∥𝑠𝑖𝑔 ∥𝑐 𝑗 ∥𝑠𝑠𝑖𝑔𝑖 ) to 𝑐𝑙
15: if 𝑢.𝑠 ≠ 𝑠𝑖 then return
16: if 𝑢 ∈ 𝑅 [𝐶 𝑗 ] then return ⊲ Skip prior updates

17: if _verifySig(𝑢, 𝑠𝑖𝑔, 𝑡𝑝𝑘 ) ∧𝑢.𝑟 = SETCA∥𝐶𝑙 then
18: 𝐶𝐴 ← 𝐶𝑙

19: else ⊲ 𝑢.𝑟 is a network update
20: if 𝐶𝐴 ≠ ⊥ then
21: handleAggMsg(𝐶 𝑗 ,𝑢, 𝑠𝑖𝑔 )
22: else
23: handleNonAggMsg(𝐶 𝑗 ,𝑢, 𝑠𝑖𝑔 )

24: procedure handleAggMsg(𝐶 𝑗 ,𝑢, 𝑠𝑖𝑔)

25: if _verifySig(𝑢, 𝑠𝑖𝑔, 𝑡𝑝𝑘 ) then
26: 𝑅 [𝐶 𝑗 ] ← 𝑅 [𝐶 𝑗 ] ∪ {𝑢 }
27: handleRule(𝑢 )

28: procedure handleNonAggMsg(𝐶 𝑗 ,𝑢, 𝑠𝑖𝑔)

29: 𝑇 [𝑢 ] ← 𝑇 [𝑢 ] ∪ {𝑠𝑖𝑔 }
30: if |𝑇 [𝑢 ] | ≥ 𝑞 then
31: 𝑠𝑖𝑔𝐴 ← _aggSig(𝑇 [𝑢 ] )
32: if _verifySig(𝑢, 𝑠𝑖𝑔𝐴, 𝑡𝑝𝑘 ) then
33: for each 𝑠𝑖𝑔𝑙 ∈ 𝑇 [𝑢 ] do
34: 𝑅 [𝐶𝑙 ] ← 𝑅 [𝐶𝑙 ] ∪ {𝑢 }
35: handleRule(𝑢 )

36: procedure sendEvent(𝑝𝑘𝑡 )
37: 𝑒 ← _generateEventData(𝑝𝑘𝑡 )
38: 𝑠𝑖𝑔 ← _sign(𝑒, 𝑠𝑠𝑘𝑖 )
39: for each ⟨𝑐 𝑗 , . . .⟩ ∈ C do
40: _send(EV∥𝑒 ∥𝑠𝑖𝑔 ) to 𝑐 𝑗
41: procedure handleRule(𝑢 )
42: _apply(𝑢.𝑟 )
43: 𝑠𝑖𝑔 ← _sign(𝑢, 𝑠𝑠𝑘𝑖 )
44: for each ⟨𝑐 𝑗 , . . .⟩ ∈ C do
45: _send(ACK∥𝑢 ∥𝑠𝑖𝑔 ) to 𝑐 𝑗

and results in a network update 𝑈 to apply the network state of the flow tables of some subset of

switches. A network update consists of a set of switch updates.
Recall that a switch update is the modification of the flow table for a switch with the given rule. A

step of a network update is a switch update 𝑢 of𝑈 or a primitive (e.g., message send/receive, atomic

actions on process memory state, etc.) performed during𝑈 along with its response. A configuration
of a network update specifies the state of each switch and the state of each controller process. The

initial configuration is the configuration in which all switches have their initial flow table entries

and all controllers are in their initial states. An execution fragment is a (finite or infinite) sequence
of steps where, starting from the initial configuration, each step is issued according to the network

update and each response of a primitive matches the state resulting from all preceding steps.

Table 6. Summary of proof notation.

Symbol Definition

E Execution of a network update

H Execution history

<E <H Total order in E or inH
𝜋𝑖 ≺E 𝜋 𝑗 Precedence of network states in E
𝑄 Sequential history

Two executions E𝑖 and E 𝑗 are indistinguish-
able to a set of control processes and switches

if each of them take identical steps in E𝑖 and
E 𝑗 . We use the notation E · ˜E to refer to an

execution in which the execution fragment
˜E

extends E. A state 𝜋𝑖 precedes another state 𝜋 𝑗
in an execution E, denoted 𝜋𝑖 ≺E 𝜋 𝑗 , if the

network update for 𝜋𝑖 occurs before the net-

work update of 𝜋 𝑗 in E. If none of two states

𝜋𝑖 and 𝜋 𝑗 precede the other, we say that 𝜋𝑖 and 𝜋 𝑗 are concurrent. An execution without concurrent

states is a sequential execution. A network state is complete in an execution E if the invocation

event is followed (possibly non-contiguously) in E by a completed network update; otherwise, it
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Algorithm 2 for controller 𝑐𝑖 with public key 𝑐𝑝𝑘𝑖 , secret key 𝑐𝑠𝑘𝑖 , and secret share 𝑐𝑠𝑠𝑖

1: C ⊲ Current control plane group
2: 𝐶𝐴 ← ⟨𝑐𝑘 , 𝑐𝑝𝑘𝑘 , 𝑖𝑑𝑘 ⟩ ∈ C | 𝑖𝑑𝑘 ≤ 𝑖𝑑 𝑗

∀⟨𝑐 𝑗 , 𝑐𝑝𝑘 𝑗 , 𝑖𝑑 𝑗 ⟩ ∈ C ⊲ Current aggregator
3: 𝜋 ⊲ Current data plane state
4: {𝑠𝑝𝑘1, . . .} ⊲ Public key for each switch
5: 𝐻 ← [] ⊲ History of events and their network updates
6: 𝑃 ← [] ⊲ Pending network updates

7: upon _receive(EV∥𝑒 ∥𝑠𝑖𝑔 ) from switch 𝑠 𝑗 do
8: if _verifySig(𝑒, 𝑠𝑖𝑔, 𝑠𝑝𝑘 𝑗 ) ∧ 𝑒 ∉ 𝐻 then
9: _propose({𝑐𝑘 | ⟨𝑐𝑘 , . . .⟩ ∈ C}, EV∥𝑒 ∥𝑠 𝑗 )
10: C𝑑 ← _updateDomain(𝑒 ) ⊲ Update domain for 𝑒
11: if C𝑑 ≠ ∅ then
12: 𝑐𝑠𝑖𝑔 ← _sign(𝑒 ∥𝑠 𝑗 , 𝑐𝑠𝑘𝑖 )
13: for each ⟨𝑐𝑘 , . . .⟩ ∈ C𝑑 do
14: _send(EV∥𝑒 ∥𝑠 𝑗 ∥𝑐𝑠𝑖𝑔 ) to 𝑐𝑘
15: upon _receive(EV∥𝑒 ∥𝑠 ∥𝑠𝑖𝑔 ) from controller

𝑐 𝑗 | 𝐶 𝑗 = ⟨𝑐 𝑗 , . . .⟩ ∈ C do
16: if ⟨𝑒, . . .⟩ ∈ 𝐻 then return ⊲ Skip known events
17: 𝑝𝑘 ← 𝑐𝑝𝑘𝑘 | 𝑐 𝑗 = 𝑐𝑘∀⟨𝑐𝑘 , 𝑐𝑝𝑘𝑘 , 𝑖𝑑𝑘 ⟩ ∈ C)
18: if recordEventRcv(𝑒, 𝑠, 𝑠𝑖𝑔, 𝑝𝑘 ) then ⊲ cf. Line 115
19: _propose({𝑐𝑙 | ⟨𝑐𝑙 , . . .⟩ ∈ C}, EV∥𝑒 ∥𝑠 )

20: upon _decide(. . . , EV∥𝑒 ∥𝑠 ) do
21: if ⟨𝑒, . . .⟩ ∈ 𝐻 then return ⊲ Skip known events
22: recordEventDcd(𝑒, 𝑠 ) ⊲ cf. Line 122
23: 𝜋𝑒 ← _handleEvent(𝜋, 𝑒 )

24: 𝑈 ← _scheduleUpdates(𝜋, 𝜋𝑒 )
25: 𝜋 ← 𝜋𝑒

26: 𝐻 ← 𝐻 ⊕ ⟨𝑒,𝑈 ⟩ ⊲ Append ⟨𝑒,𝑈 ⟩ to 𝐻
27: 𝑃 ← 𝑃 ⊕𝑈 ⊲ Append𝑈 to 𝑃
28: checkSendUpdates( )

29: upon _receive(ACK∥𝑢𝑘 ∥𝑠𝑖𝑔 ) from switch 𝑠 𝑗 do
30: if _verifySig(𝑢𝑘 , 𝑠𝑖𝑔, 𝑠𝑝𝑘 𝑗 ) then
31: recordUpdateAck(𝑢𝑘 ) ⊲ cf. Line 124
32: for each 𝑢𝑙 ∈ 𝑈1 | 𝑃 = 𝑈1 ⊕ . . . ⊕𝑈 |𝑃 | do
33: 𝑢𝑙 .𝐷 ← 𝑢𝑙 .𝐷 \ {𝑢𝑘 }
34: checkSendUpdates( )

35: procedure checkSendUpdates()
36: 𝑈 ← 𝑈1 | 𝑃 = 𝑈1 ⊕ . . . ⊕𝑈 |𝑃 |
37: for each 𝑢 ∈ 𝑈 do
38: if 𝑢.𝐷 = ∅ then
39: sendSwitchUpdate(𝑢 )
40: 𝑈 ← 𝑈 \ {𝑢 }
41: if 𝑈 = ∅ then
42: 𝑃 ← 𝑃 ⊖𝑈 ⊲ Remove𝑈 from 𝑃

43: procedure sendSwitchUpdate(𝑢 )
44: 𝑠𝑖𝑔 ← _sign(𝑢, 𝑐𝑠𝑠𝑖 )
45: if 𝐶𝐴 ≠ ⊥ then
46: _send(UPD∥𝑢 ∥𝑠𝑖𝑔 ) to 𝑐𝑘 | 𝐶𝐴 = ⟨𝑐𝑘 , . . .⟩
47: else
48: _send(UPD∥𝑢 ∥𝑠𝑖𝑔 ) to 𝑢.𝑠

Algorithm 3 for controller 𝑐𝑖 with public key 𝑐𝑝𝑘𝑖 , secret key 𝑐𝑠𝑘𝑖 , and secret share 𝑐𝑠𝑠𝑖 – extends

Algorithm 2 for the purpose of controller aggregation.

49: 𝐴 ← [] ⊲ Previously aggregated updates
50: 𝑇 ← [] ⊲ Received update signature shares
51: 𝑞 ← 2 ×

⌊
𝑛−1
3

⌋
+ 1 ⊲ Quorum size

52: procedure setAggregator(𝐶 )
53: for each switch 𝑠 𝑗 do
54: 𝑢 ← ⟨𝑠 𝑗 , SETCA∥𝐶, ∅⟩
55: 𝑠𝑖𝑔 ← _sign(𝑢, 𝑐𝑠𝑠𝑖 )
56: _send(UPD∥𝑢 ∥𝑠𝑖𝑔 ) to 𝑐𝑘 | 𝐶 = ⟨𝑐𝑘 , . . .⟩

57: upon _receive(UPD∥𝑢 ∥𝑠𝑖𝑔 ) from controller

𝑐 𝑗 | 𝐶 𝑗 = ⟨𝑐 𝑗 , . . .⟩ ∈ C do
58: if 𝑢 ∈ 𝐴 [𝐶 𝑗 ] then return ⊲ Skip prior updates

59: 𝑇 [𝑢 ] ← 𝑇 [𝑢 ] ∪ {𝑠𝑖𝑔 }
60: if |𝑇 [𝑢 ] | ≥ 𝑞 then
61: 𝑠𝑖𝑔𝐴 ← _aggSig(𝑇 [𝑢 ] )
62: if _verifySig(𝑢, 𝑠𝑖𝑔𝐴, 𝑡𝑝𝑘 ) then
63: _send(UPD∥𝑢 ∥𝑠𝑖𝑔𝐴 ) to 𝑢.𝑠

is incomplete. Execution of E is complete if every state in E is complete. A high-level history HE
of an execution E is the subsequence of E consisting of the network state event invocations and

network updates.

Definition 5.1 (Event-linearizability of network updates). An execution E is event-linearizable [22]
if there exists a sequential high-level history 𝑄 equivalent to some completion of HE such that

(1) ≺HE⊆≺𝑄 (state precedence is respected) and (2) HE respects the sequential specification of

states in 𝑄 . A network update is event-linearizable if every execution E of the network updates is

event-linearizable.

5.4 Event-Linearizability of the SERENE Protocol
Theorem 5.2. Every execution of the SERENE protocol provides event-linearizable network updates.
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Algorithm 4 for controller 𝑐𝑖 with public key 𝑐𝑝𝑘𝑖 , secret key 𝑐𝑠𝑘𝑖 , and secret share 𝑐𝑠𝑠𝑖 – extends

Algorithm 3 (and Algorithm 2) for the purpose of membership changes.

64: {𝑐𝑝𝑘1, . . .} ⊲ Public key for each controller until C is set
65: 𝑝ℎ ← 0 ⊲ Current key distribution phase
66: 𝑛𝑖𝑑 ← |C| + 1 ⊲ Next available node ID

67: upon new controller start do
68: wait until _receive(BOOT∥ C𝑛 ∥𝑖𝑑 ∥𝑝ℎ𝑛 ∥𝐶𝑙 ∥𝑠𝑖𝑔 )

from bootstrap controller 𝑐 𝑗

69: if _verifySig(C𝑛 ∥𝑖𝑑 ∥𝑝ℎ𝑛 ∥𝐶𝑙 , 𝑠𝑖𝑔, 𝑐𝑝𝑘 𝑗 ) then
70: 𝑛𝑖𝑑 ← 𝑖𝑑

71: 𝐶𝐴 ← 𝐶𝑙

72: C ← C𝑛
73: 𝑝ℎ ← 𝑝ℎ𝑛

74: _DKGStart(C, 𝑝ℎ, 𝑐𝑠𝑠𝑖 )

75: upon addController(𝑐 𝑗 , 𝑐𝑝𝑘 𝑗 ) do ⊲ Bootstrap addition
76: _propose({𝑐𝑘 | ⟨𝑐𝑘 , . . .⟩ ∈ C},ADD∥𝑐 𝑗 ∥𝑐𝑝𝑘 𝑗 )

77: upon _decide(. . . ,ADD∥𝑐 𝑗 ∥𝑐𝑝𝑘 𝑗 ) do
78: C ← C ∪ {⟨𝑐 𝑗 , 𝑐𝑝𝑘 𝑗 , 𝑛𝑖𝑑 ⟩}
79: 𝑛𝑖𝑑 ← 𝑛𝑖𝑑 + 1
80: if 𝑐𝑖 is bootstrap controller then
81: 𝑠𝑖𝑔 ← _sign(C∥𝑛𝑖𝑑 ∥𝑝ℎ ∥𝐶𝐴, 𝑐𝑠𝑘𝑖 )
82: _send(BOOT∥ C∥𝑛𝑖𝑑 ∥𝑝ℎ ∥𝐶𝐴 ∥𝑠𝑖𝑔 ) to 𝑐 𝑗

83: 𝑞 ← 2 ×
⌊
𝑛−1
3

⌋
+ 1

84: _DKGStart(C, 𝑝ℎ, 𝑐𝑠𝑠𝑖 )

85: procedure leave( ) ⊲ cf. Line 126 to remove failed ones
86: 𝑠𝑖𝑔 ← _sign(LEAVE∥𝑐𝑖 , 𝑐𝑠𝑘𝑖 )
87: _propose({𝑐𝑘 | ⟨𝑐𝑘 , . . .⟩ ∈ C}, LEAVE∥𝑐𝑖 ∥𝑠𝑖𝑔 )

88: upon _decide(. . . , LEAVE∥𝑐 𝑗 ∥𝑠𝑖𝑔 ) do
89: if _verifySig(LEAVE∥𝑐 𝑗 , 𝑠𝑖𝑔, 𝑐𝑝𝑘 𝑗 ) then
90: decidedToRemove(𝑐 𝑗 )

91: procedure decidedToRemove(𝑐 𝑗 )
92: 𝐶𝑅 ← ⟨𝑐 𝑗 , 𝑐𝑝𝑘 𝑗 , 𝑖𝑑 𝑗 ⟩ ∈ C
93: C ← C \ {𝐶𝑅 }
94: 𝑞 ← 2 ×

⌊
𝑛−1
3

⌋
+ 1

95: if 𝐶𝐴 = ⟨𝑐 𝑗 , . . .⟩ then ⊲ New aggregator
96: 𝐶𝐴 ← ⟨𝑐𝑘 , 𝑐𝑝𝑘𝑘 , 𝑖𝑑𝑘 ⟩ ∈ C | 𝑖𝑑𝑘 ≤ 𝑖𝑑𝑙

∀⟨𝑐𝑙 , 𝑐𝑝𝑘𝑙 , 𝑖𝑑𝑙 ⟩ ∈ C
97: setAggregator(𝐶𝐴 )
98: _DKGStart(C, 𝑝ℎ, 𝑐𝑠𝑠𝑖 )

99: upon _DKGComplete(𝑠ℎ ) do
100: 𝑐𝑠𝑠𝑖 ← 𝑠ℎ

101: 𝑝ℎ ← 𝑝ℎ + 1

Algorithm 5 for controller 𝑐𝑖 with public key 𝑐𝑝𝑘𝑖 , secret key 𝑐𝑠𝑘𝑖 , and secret share 𝑐𝑠𝑠𝑖 – extends

Algorithm 4 for the purpose of detecting failures. Annex procedures are in Algorithm 6.

102: 𝐴𝐶𝐾 ← ∅ ⊲ Acknowledgments received from switches
103: 𝐿 ← [] ⊲ Local version of the distributed ledger
104: 𝐿𝑆 ← [] ⊲ Ledger snapshot: used to ignore recent events

and updates still under deployment
105: 𝑡𝐿 ⊲ Ledger parsing period

106: upon _detectHBFailure(𝑐 𝑗 ) do
107: handleFailure(𝑐 𝑗 )

108: upon _receive(ECH∥𝑢 ∥𝑠𝑖𝑔𝑘 ∥𝑐𝑘 ∥𝑠𝑠𝑖𝑔𝑙 )
from switch 𝑠𝑙 do

109: if _verifySig(𝑢 ∥𝑠𝑖𝑔𝑘 ∥𝑐𝑘 , 𝑠𝑠𝑖𝑔𝑙 , 𝑠𝑝𝑘𝑙 ) then
110: if 𝑢.𝑠 = 𝑠𝑙 then
111: 𝐿 ← 𝐿 ⊕ ⟨UPD,𝑢, 𝑠𝑖𝑔𝑘 , 𝑐𝑘 ⟩
112: detectMissingDeps(𝑢, 𝑐𝑘 ) ⊲ cf. Line 184
113: else
114: handleFailure(𝑐𝑘 )

115: function recordEventRcv(𝑒, 𝑠, 𝑠𝑖𝑔𝑗 , 𝑐𝑝𝑘 𝑗 )
116: if _verifySig(𝑒 ∥𝑠, 𝑠𝑖𝑔𝑗 , 𝑐𝑝𝑘 𝑗 ) then
117: 𝐿 ← 𝐿 ⊕ ⟨EVR, 𝑒, 𝑠, 𝑐 𝑗 ⟩
118: return true

119: else
120: handleFailure(𝑐 𝑗 )
121: return false

122: procedure recordEventDcd(𝑒, 𝑠 )
123: 𝐿 ← 𝐿 ⊕ ⟨EVD, 𝑒, 𝑠 ⟩

124: procedure recordUpdateAck(𝑢 )
125: 𝐴𝐶𝐾 ← 𝐴𝐶𝐾 ∪ {𝑢 }

126: procedure handleFailure(𝑐 𝑗 )
127: _propose({𝑐𝑘 | ⟨𝑐𝑘 , . . .⟩ ∈ C},REM∥𝑐 𝑗 )

128: upon _decide(. . . ,REM∥𝑐 𝑗 ) do
129: decidedToRemove(𝑐 𝑗 )

130: task executed every 𝑡𝐿

131: if 𝐿𝑆 ≠ [] then
132: ⊲ Ensure proposals in 𝐿𝑆 are with their decisions
133: collectMissingEventDecisions( ) ⊲ cf. Line 145
134: ⊲ Ensure updates in 𝐿𝑆 are with their signatures
135: collectMissingSignatureShares( ) ⊲ cf. Line 151
136: ⊲ Failure detection policies from Section 4.4
137: detectRejectedEvents( ) ⊲ cf. Line 156
138: detectMutenessFailures( ) ⊲ cf. Line 160
139: detectMinoritySigners( ) ⊲ cf. Line 164
140: detectMissingUpdates( ) ⊲ cf. Line 170
141: 𝐿𝑆 ← 𝐿

142: 𝐿 ← []

Proof. The proof proceeds by iteration on the epochs associated with changes in the con-

troller membership. Specifically, each epoch in an execution E is characterized by a static set
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Algorithm 6 for controller 𝑐𝑖 with public key 𝑐𝑝𝑘𝑖 , secret key 𝑐𝑠𝑘𝑖 , and secret share 𝑐𝑠𝑠𝑖 – extends

Algorithm 5 to describe annex procedures including those for failure detection procedures.

143: 𝑁 ← [] ⊲ Current network update for each controller
144: 𝑁𝑖𝑑𝑥 ← [−1, . . . , −1] ⊲ Current network update index

processed by each controller

145: procedure collectMissingEventDecisions( )
146: for each ⟨EVR, 𝑒, 𝑠𝑘 , 𝑐 𝑗 ⟩ ∈ 𝐿𝑆 do
147: if ∃⟨EVD, 𝑒𝑛, 𝑠𝑙 ⟩ ∈ 𝐿 | 𝑒𝑛 = 𝑒 ∧ 𝑠𝑘 = 𝑠𝑙 then
148: Δ← ⟨EVD, 𝑒𝑛, 𝑠𝑙 ⟩
149: 𝐿𝑆 ← 𝐿𝑆 ⊕ Δ ⊲ Append Δ to 𝐿𝑆
150: 𝐿 ← 𝐿 ⊖ Δ ⊲ Remove Δ from 𝐿

151: procedure collectMissingSignatureShares( )
152: for each ⟨UPD,𝑢, 𝑠𝑖𝑔𝑗 , 𝑐 𝑗 ⟩ ∈ 𝐿𝑆 do
153: Δ← {⟨UPD,𝑢𝑛, 𝑠𝑖𝑔𝑘 , 𝑐𝑘 ⟩ | 𝑢 = 𝑢𝑛

∀⟨UPD,𝑢𝑛, 𝑠𝑖𝑔𝑘 , 𝑐𝑘 ⟩ ∈ 𝐿 }
154: 𝐿𝑆 ← 𝐿𝑆 ⊕ Δ
155: 𝐿 ← 𝐿 ⊖ Δ

156: procedure detectRejectedEvents( )
157: for each ⟨EVR, 𝑒, 𝑠𝑘 , 𝑐 𝑗 ⟩ ∈ 𝐿𝑆 do
158: if �⟨EVD, 𝑒𝑛, 𝑠𝑙 ⟩ ∈ 𝐿𝑆 | 𝑒𝑛 = 𝑒 ∧ 𝑠𝑘 = 𝑠𝑙 then
159: handleFailure(𝑐 𝑗 )

160: procedure detectMutenessFailures( )
161: for each ⟨𝑐 𝑗 , . . .⟩ ∈ C do
162: if �⟨UPD, . . . , 𝑐𝑘 ⟩ ∈ 𝐿𝑆 | 𝑐 𝑗 = 𝑐𝑘 then
163: handleFailure(𝑐 𝑗 )

164: procedure detectMinoritySigners( )

165: for each unique 𝑢 | 𝑢 = 𝑢𝑛

∀⟨UPD,𝑢𝑛, 𝑠𝑖𝑔𝑗 , 𝑐 𝑗 ⟩ ∈ 𝐿𝑆 do
166: ⟨𝑆𝐼𝐺, C𝑆𝐼𝐺 ⟩ ← {⟨𝑠𝑖𝑔𝑘 , 𝑐𝑘 ⟩ | 𝑢 = 𝑢𝑚

∀⟨UPD,𝑢𝑚, 𝑠𝑖𝑔𝑘 , 𝑐𝑘 ⟩ ∈ 𝐿𝑆 }
167: if |𝑆𝐼𝐺 | < 𝑞 then
168: for each 𝑐𝑙 ∈ C𝑆𝐼𝐺 do
169: handleFailure(𝑐𝑙 )

170: procedure detectMissingUpdates( )
171: for each ⟨𝑐 𝑗 , . . .⟩ ∈ C do
172: for each ⟨UPD,𝑢, 𝑠𝑖𝑔𝑙 , 𝑐𝑙 ⟩ ∈ 𝐿𝑆 | 𝑐 𝑗 = 𝑐𝑙 do
173: if 𝑁 [𝑐 𝑗 ] = ∅ ∧ 𝑁𝑖𝑑𝑥 [𝑐 𝑗 ] = −1 then ⊲ Init
174: 𝑁 [𝑐 𝑗 ] ← 𝑈𝑘 | ∃⟨𝑒,𝑈𝑘 ⟩ ∈ 𝐻 ∧𝑢 ∈ 𝑈𝑘

175: 𝑁𝑖𝑑𝑥 [𝑐 𝑗 ] ← 𝑘

176: if �𝑢 ∈ 𝑁 [𝑐 𝑗 ] ∨ 𝑁𝑖𝑑𝑥 [𝑐 𝑗 ] = −1 then
177: handleFailure(𝑐 𝑗 )
178: break loop
179: else
180: 𝑁 [𝑐 𝑗 ] ← 𝑁 [𝑐 𝑗 ] \ {𝑢 }
181: if 𝑁 [𝑐 𝑗 ] = ∅ then
182: 𝑁𝑖𝑑𝑥 [𝑐 𝑗 ] ← 𝑁𝑖𝑑𝑥 [𝑐 𝑗 ] + 1
183: 𝑁 [𝑐 𝑗 ] ← 𝐻 [𝑁𝑖𝑑𝑥 [𝑐 𝑗 ] ] .𝑈

184: procedure detectMissingDeps(𝑢, 𝑐𝑘 )
185: 𝐷 ← 𝑢𝑙 .𝐷 | ∃⟨𝑒, {𝑢𝑙 , . . .}⟩ ∈ 𝐻 ∧𝑢 = 𝑢𝑙
186: if ∃𝑢′ ∈ 𝐷 | 𝑢′ ∉ 𝐴𝐶𝐾 then
187: handleFailure(𝑐𝑘 )

C = {⟨𝑐1, . . .⟩, . . . , ⟨𝑐𝑖 , . . .⟩} of controllers. In the following, we present the event linearizability of

the SERENE protocol without using any controller aggregation.

Event linearizability for an execution in the first epoch. The application of a network state 𝜋𝑖 in

an execution E begins with an event invocation by a switch 𝑠𝑖 ∈ S (Line 8 of Algorithm 1) followed

by a network update performed by the procedure handleRule in Line 35 of Algorithm 1. All steps

performed by the state machines described by the pseudocode within these lines denote the lifetime
of 𝜋𝑖 . Specifically, the lifetime of 𝜋𝑖 in an execution E starts with the invocation of the procedure

sendEvent (Line 8 of Algorithm 1) which sends a signed event to a controller to initiate the network

update protocol. The proof proceeds by assigning a serialization point for a state which identifies

the step in the execution in which the state takes effect. First, we obtain a completion of E by

removing every incomplete state from E. Henceforth, we only consider complete executions.

LetH denote the high-level history of E constructed as follows: firstly, we derive linearization
points of procedures performed in E. The linearization point of any procedure 𝑜𝑝 is associated

with a message step performed between the lifetime of 𝑜𝑝 . A linearizationH of E is obtained by

associating the last event performed within 𝑜𝑝 as the linearization point. We then deriveH as the

subsequence of E consisting of the network state event invocations and network updates. Let <E
denote a total order on steps performed in E and <H denotes a total order on steps in the complete

historyH . We then define the serialization point of a state 𝜋𝑖 ; this is associated with an execution

step or the linearization point of an operation performed within the execution of 𝜋𝑖 . Specifically,

a complete sequential history 𝑄 is obtained by associating serialization points to states inH as
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follows: for every complete network update in E, the serialization point is assigned to the last event

of the loop in Line 35 of Algorithm 1.

Claim 1. For any two states 𝜋𝑖 and 𝜋 𝑗 in E, if 𝜋𝑖 ≺H 𝜋 𝑗 , then 𝜋𝑖 <𝑆 𝜋 𝑗 .

Proof. The proof immediately follows from the fact that the serialization point for a state 𝜋𝑖
(and resp. 𝜋 𝑗 ) is assigned to a step within the lifetime of 𝜋𝑖 (and resp. 𝜋 𝑗 ). □

Let 𝑄𝑘 be the prefix of 𝑄 consisting of the first 𝑘 complete operations. We associate each 𝑄𝑘

with a set 𝜋𝑘 of states that were successfully completed in 𝑄𝑘 . We show by induction on 𝑘 that the

sequence of state transitions in 𝑄𝑘 is consistent with the sequential state specification. The base

case 𝑘 = 1 is trivial: only one state is sequentially executed.

Claim 2. 𝑄𝑘+1 is consistent with the sequential specification of network updates.

Proof. Let [𝑈1, . . . ,𝑈𝑛] be the sequence of network updates where for all 𝑖 ∈ {1, . . . , 𝑛}, 𝑈𝑖 is
the network update for 𝜋𝑖 . Recall that each network update consists of {𝑢1, . . . , 𝑢𝑚}: a set of switch
updates. Suppose by contradiction that 𝑄𝑘+1 does not respect the sequential specification. The only
nontrivial case to consider is that there exist two concurrent updates 𝜋𝑖 and 𝜋 𝑗 in E𝑘+1 such that

𝑄𝑘+1 is not consistent with the sequential specification.

Note that if 𝜋𝑖 precedes 𝜋𝑘 according to the sequential specification, there does not exist 𝑖 < 𝑗 < 𝑘

such that𝜋𝑖 <𝑄 𝜋 𝑗 <𝑄 𝜋𝑘 . Suppose by contradiction that such a𝜋 𝑗 exists. Recall that every controller

agrees on the output of the sequence of events in Line 9 of Algorithm 2. Consequently, the only

reason for such a 𝜋 𝑗 to exist is if the last switch update of𝑈 𝑗 precedes the first switch update of𝑈𝑘 .

But this is not possible because by the assignment of serialization points, the outcome of _propose
enforces the execution of 𝜋𝑘 immediately after 𝜋𝑖 and and any other 𝜋 𝑗 will have to wait for the

acknowledgement from successful completion of switch updates in 𝜋𝑘 before starting its own switch

updates. We now show that the state of the data plane as constructed in𝑄𝑘+1 is consistent with the

sequential specification. Specifically, we show that given any two network updates𝑈𝑖 <𝑄 𝑈 𝑗 , the

individual switch updates within each are not interleaved. Since every switch update performed in

𝑈𝑖 (and resp.𝑈 𝑗 ) is applied only if it has been received from a quorum of trusted controllers, we

only consider the case where a switch update associated with𝑈 𝑗 is executed prior to the last switch

update performed in𝑈𝑖 . However, as described in Line 41 of Algorithm 2, the switch updates for𝑈 𝑗
is not sent until acknowledgments for all updates in𝑈𝑖 have been received. □

The conjunction of Claim 1 and Claim 2 together establish that E is event linearizable.

Extending the proof to arbitrary executions. To complete the proof, we show that the execution E· ˜E
is event linearizable, where C and ˜C are not necessarily related by containment (here C and ˜C are the
set of controllers in E and

˜E). A phase value records the current iteration of membership change and

uniquely defines the controller membership set and is incremented with each controller addition

or removal. Each phase change is initiated by the membership change proposal: addController in
Algorithm 4 and handleFailure in Algorithm 5. Observe that both membership changes and event

proposals are processed using the same agreement protocol. By the nature of this protocol only a

single instance of agreement can be performed at a time. As such, no events are processed until

after the membership change has completed which prevents control plane members from having to

keep old and new signature shares concurrently. Concurrent events received from the data plane

are queued and not executed until after the instance of agreement has completed, in which case,

the execution fragment extending the phase 1 execution extends a well-defined data plane state as

proved in Claim 2. □
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5.5 Security Analysis of the SERENE Protocol
We argue why even forward progress of SERENE is not affected by faulty/malicious controllers with

respect to our threat model (Section 3.1).

We remark that Theorem 5.2 holds even if the faulty/malicious controller may eavesdrop on

communication between switches in the data plane, controllers in the control plane, and/or between

switches and controllers. Note that eavesdropping allows amalicious controller to gain knowledge of

network data therefore allowing an adversary the ability to record events and/or updates. However,

in SERENE, it is assumed that events and updates do not need to be kept confidential. The risk of

such an assumption merely allows for an adversary to modify and/or replay the transmission of

the message. Consequently we can consider the possibility of the following threats and explain

how SERENE mitigates them.

Adversarial events: A faulty/malicious controller may modify or create a network event, however,

a valid event is signed with the source’s secret key. The public keys for valid event sources

are distributed to all controllers. Therefore, except for negligible probability, valid events

cannot be created by any process other than verified sources. Furthermore, event sources in

our threat model remain correct and therefore never create and sign incorrect events.

Adversarial switch updates: A faulty/malicious controller may send any arbitrary update to a switch,

however, the update must be verified against the control plane threshold public key. Utilizing

the guarantees of DKG, except for negligible probability, valid updates cannot be created by

any process other than a quorum of controllers. Existing research has shown that attacks

exist in an attempt to force malicious updates to be applied at the controller application

level [88]. However, for those attacks to be effective against the guarantees of DKG used by

SERENE, the attack must be performed by a quorum majority of controller processes. If a

switch receives an update signed by less than a majority of controllers, the verification of the

update signature fails and the update is discarded.

Duplicated events: A faulty/malicious controller may resend any previously sent event, however,

all events are given a unique identifier and duplicate events are ignored by the control plane.

Duplicated switch updates: A faulty/malicious controller may resend any previously sent update,

however, all updates are given unique identifier and duplicate updates, even those with valid

signatures from an aggregator controller, are ignored by the data plane.

Adversarial/duplicated switch updates - cross-domain: While switch updates are given a unique

identifier, this identifier is unique to the domain. A faulty/malicious controller may ob-

serve and replay any update to a switch from another domain. However, the control plane

for each domain is given a unique threshold public key. Except for negligible probability, any

update sent from another domain is never validated nor applied by a switch.

6 SERENE IMPLEMENTATION
This section outlines the implementation of SERENE. As Figure 9 shows, SERENE is implemented

as a middleware between the controller application, containing network policies, and the data plane

switches, storing and forwarding network traffic based on established flow table rules.

6.1 Control Plane Components
The controller platform is extended with a Java layer for SERENE, which processes the received

events (e.g., signature verification, broadcast) and updates sent to the data plane (e.g., signing with

secret share, ordering updates, and handling acknowledgements). Another process in the Java layer

handles signature aggregation to be sent to the data plane when controller aggregation is used. A

controller is made up of the following nine components:
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(a) SERENE controller runtime. (b) SERENE switch runtime.

Figure 9. Depiction of the SERENE runtime components on controllers and switches.

Controller application: Network policies are set based on the controller application. While

SERENE is designed as separate layer to support any controller application, our implementa-

tion uses the Ryu [21] runtime and establishes flow rules based on shortest path routing.

Global domain policies: SERENE requires global domain policies for determining network up-

dates for flows that cross domains. The implementation is specific to the controller application.

Our implementation uses global policies based on the shortest path between domains.

Update scheduler: To ensure update consistency, the SERENE runtime depends on the existence

of an update scheduler used to determine dependencies between network updates. The update

scheduler used for the evaluation assigns dependencies for network updates based on the

reverse of a network flow’s path. For example, consider a network flow that traverses three

switches (𝑠1 → 𝑠2 → 𝑠3). Establishing this flow requires updating all of these switches. The

update scheduler assigns dependencies for these updates such that (1) all updates are applied

to 𝑠3 before any updates to 𝑠2 can be applied, and that (2) all updates are applied to 𝑠2 before

any updates to 𝑠1 can be applied. This ensures downstream rules for the flow are set before

any network data is allowed to traverse the network.

Broadcast library: SERENE utilizes atomic broadcast to distribute events among the members

of the control plane communication group. The broadcast library strictly follows atomic

broadcast’s specifications and guarantees [78], by using the BFT-SMaRt library [14].

Threshold signatures: Data plane switches authenticate updates with threshold signatures that

can only be verified when a quorum of signatures is formed. Our implementation makes use

of BLS signatures [89] implemented in the Pairing Based Cryptography library [23].

Private key share distribution: The distribution of private shares for controllers — so they can

sign switch updates — is performed using the DKG library [18].

Southbound interface: We extend the OpenFlow message protocol with new message types for

signed messages, and add unique identifiers to messages to prevent duplicate processing of

events and updates. We also utilize TLS with OpenFlow to ensure integrity and confidentiality

of communication between the data plane and the control plane.

Signature aggregation: SERENE supports switch and controller aggregation. For the latter, switches
are assigned the aggregator with OpenFlow “master/slave role request” messages [90].
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Failure detector: We use periodic heartbeat messages to detect crash failures, they are sent using

the broadcast library. The distributed ledger implements Algorithm 5 and Algorithm 6.

6.2 Data Plane Components
The SERENE switch platform is an extension to Open vSwitch (OVS) to perform signature aggre-

gation and verification of updates both thanks to threshold public key component. The signature

aggregation modules stores signed updates in a hash map provided within the OVS implementation.

The management of received rules and signatures consists of ≈600 LOC. The threshold public key

component consists of a ≈300 LOC-extension to OVS that utilizes the pairing based cryptography

(PBC) library [23] for the creation and verification of signatures. OVS uses a single function for

handling events from the control plane. The SERENE extension injects code into this function to

redirect received events to the signature verification module.

Additionally, changes are made for switches to either send events only to the aggregator controller

if there is one, or multicast events to all the members of the control plane. As a further consistency

mechanism, acknowledgments are sent to the control plane once updates are applied.

As is clear in Figure 9, the switch runtime is considerably simpler than the controller runtime.

We specifically designed SERENE to minimize the resource consumption (both memory and storage

of executable size) impact on switches because of their low capabilities. Our implementation, being

an extension of OVS, may function on any switch with the ability to run this software package.

7 SECURE TOPOLOGY DISCOVERY
In many cases, to make accurate network policy decisions, it is essential to have a correct method for

discovering data plane state. This is useful to a network controller to determine optimal provisioning

of network resources to flows as well as to discover link and/or switch failures. However, there are

a number of attack vectors in the OpenFlow discovery protocol (OFDP) as discussed by Azzouni et

al. [28]. To prevent these attacks, we implemented a secure topology discovery layer with SERENE.

While our computation model assumes switches themselves are not malicious, controllers could

masquerade as switches and send erroneous information to the control plane. Without protection,

such information may corrupt the control plane’s view of the data plane state.

7.1 Discovery Process
Topology discovery is twofold: switch discovery, as part of OpenFlow connection setup, uses pairs

of “feature request” and “feature response” messages while link discovery uses OFDP [24], based

on the link layer discovery protocol (LLDP) [91].

The algorithm for OFDP secured with SERENE is described in Algorithm 7. Highlighted portions

indicate where OFDP integrates with SERENE to utilize the security mechanisms of the protocol.

The algorithm makes use of the following functions to build network messages.

Create LLDP message: _createLLDPMsg(𝑝𝑜𝑟𝑡), a function to create an LLDP frame with the

given source port as described by the protocol [91].

Create output action: _OUTPUT(𝑝𝑜𝑟𝑡), instruct a switch to take the action to send a packet

through the specified port.

Retrieve OpenFlow message type: _type(𝑚𝑠𝑔), a function to retrieve the OpenFlow message

type from a given message.

Create packet out message: _createPktOut(𝑎𝑐𝑡𝑖𝑜𝑛, 𝑑𝑎𝑡𝑎), a function to create anOpenFlowPack-

etOut message with the given action and payload data.
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Algorithm 7 OFDP [24] and interaction with SERENE (highlighted) controller 𝑐𝑖 with public key

𝑐𝑝𝑘𝑖 , 𝑐𝑠𝑘𝑖 , and secret share 𝑐𝑠𝑠𝑖 .

1: 𝑡𝑑 ⊲ Discovery interval
2: 𝑀 ← ∅ ⊲ Map of switches to sets of ports
3: ⟨𝑉, 𝐸 ⟩ ← ⟨∅, ∅⟩ ⊲ Connectivity graph𝐺

4: task executed every 𝑡𝑑
5: for each 𝑠 𝑗 | 𝑀 [𝑠 𝑗 ] ≠ ∅ do
6: for each 𝑝𝑜𝑟𝑡 ∈ 𝑀 [𝑠 𝑗 ] do
7: 𝑎𝑐𝑡𝑖𝑜𝑛 ← _OUTPUT(𝑝𝑜𝑟𝑡 )
8: 𝑑𝑎𝑡𝑎 ← _createLLDPMsg(𝑝𝑜𝑟𝑡 )
9: 𝑟𝑢𝑙𝑒 ← _createPktOut(𝑎𝑐𝑡𝑖𝑜𝑛,𝑑𝑎𝑡𝑎)
10: sendSwitchUpdate(⟨𝑠 𝑗 , 𝑟𝑢𝑙𝑒, ∅⟩)

⊲ cf. Line 43 of Algorithm 2

11: upon _receive new connection from switch 𝑠 𝑗 do
12: 𝑉 ← 𝑉 ∪ {𝑠 𝑗 }
13: 𝑟𝑢𝑙𝑒 ← _createFeatureRequest( )
14: sendSwitchUpdate(⟨𝑠 𝑗 , 𝑟𝑢𝑙𝑒, ∅⟩)

⊲ cf. Line 43 of Algorithm 2
15: 𝑚𝑎𝑡𝑐ℎ ← LLDP
16: 𝑎𝑐𝑡𝑖𝑜𝑛 ← CONTROLLER

17: 𝑟𝑢𝑙𝑒 ← _createFlowMod(𝑚𝑎𝑡𝑐ℎ, 𝑎𝑐𝑡𝑖𝑜𝑛)
18: sendSwitchUpdate(⟨𝑠 𝑗 , 𝑟𝑢𝑙𝑒, ∅⟩)

⊲ cf. Line 43 of Algorithm 2

19: upon _receive(FeatureResponse, 𝑃 ) from switch 𝑠 𝑗 do
20: for each 𝑝𝑜𝑟𝑡 ∈ 𝑃 do
21: 𝑀 [𝑠 𝑗 ] ← 𝑀 [𝑠 𝑗 ] ∪ {𝑝𝑜𝑟𝑡 }
22: 𝑉 ← 𝑉 ∪ {𝑝𝑜𝑟𝑡 .ℎ𝑤_𝑎𝑑𝑑𝑟 }
23: 𝐸 ← 𝐸 ∪ {⟨𝑠 𝑗 , 𝑝𝑜𝑟𝑡 .ℎ𝑤_𝑎𝑑𝑑𝑟,⊥⟩}
24: 𝐸 ← 𝐸 ∪ {⟨𝑝𝑜𝑟𝑡 .ℎ𝑤_𝑎𝑑𝑑𝑟, 𝑠 𝑗 ,⊥⟩}

25: upon _receive(PacketIn,𝑚𝑠𝑔 ) from switch 𝑠 𝑗 do
26: if _type(𝑚𝑠𝑔 ) ≠ LLDP then return
27: ⟨𝑠𝑠𝑟𝑐 , 𝑝𝑜𝑟𝑡𝑠𝑟𝑐 ⟩ ← switchForPort(𝑚𝑠𝑔.𝑠𝑟𝑐 )
28: ⟨𝑠𝑑𝑠𝑡 , 𝑝𝑜𝑟𝑡𝑑𝑠𝑡 ⟩ ← switchForPort(𝑚𝑠𝑔.𝑑𝑠𝑡 )
29: 𝐸 ← 𝐸 ∪ {⟨𝑠𝑠𝑟𝑐 , 𝑠𝑑𝑠𝑡 , 𝑝𝑜𝑟𝑡𝑠𝑟𝑐 .𝑝𝑜𝑟𝑡_𝑖𝑑 ⟩}

30: function switchForPort(𝑝)
31: return ⟨𝑠 𝑗 , 𝑝𝑜𝑟𝑡 ⟩ |

𝑝𝑜𝑟𝑡 ∈ 𝑀 [𝑠 𝑗 ] ∧ 𝑝𝑜𝑟𝑡 .ℎ𝑤_𝑎𝑑𝑑𝑟 = 𝑝

Create flow modify message: _createFlowMod(𝑚𝑎𝑡𝑐ℎ, 𝑎𝑐𝑡𝑖𝑜𝑛), a function to create an Open-

Flow FlowMod message with the given flow table match data and action.

Create feature request message: _createFeatureRequest(), a function to create an OpenFlow

FeatureRequest message.

Formally, the discovered topology is maintained by the controller as a graph𝐺 = ⟨𝑉, 𝐸⟩, where𝑉
is the set of vertices (switches and hosts), and 𝐸 is the set of edges consisting of a set of 3-tuples

(𝑠, 𝑡, 𝑝) where 𝑠 is the source, 𝑡 is the target, and 𝑝 is the port identifier on the source for which

traffic must be sent in order to reach 𝑡 . A source 𝑠 or target 𝑡 may be a switch (datapath) identifier

or a port hardware address. If 𝑝 is the special value ⊥ then the source and the target are the same.

This would be the case when the source is a switch identifier and the target is a port hardware

address for a port in the same switch.

7.2 Switch and Link Discovery
As part of an OpenFlow connection setup, when a switch connects to a controller, the controller

sends a FeatureRequest message to the switch. The switch responds with a FeatureResponse
containing its switch (datapath) identifier, and a list of physical ports. Each physical port entry

contains the port identifier and corresponding port hardware address. Switch discovery establishes

entries in 𝑉. An entry is created for each switch identifier and each port hardware address. Once

a switch is discovered, a controller sets a flow table entry instructing the switch to forward all

received LLDP frames to the controller as PacketIn events.

At regular intervals, for all discovered switches, the controller sends PacketOut messages con-

taining LLDP frames as payload to be sent to out each switch port. When the switch on the other

end of the link receives the LLDP frame, using the forwarding rule set during switch discovery, it

encapsulates the LLDP frame in a PacketIn event and forwards it to the controller. The LLDP frame

contains the port hardware address for the sending switch while the PacketOut event contains the
port identifier and hardware address for the receiving switch. Using this information the controller

creates an entry in 𝐸 for the discovered link endpoints.
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Table 7. Parameters of the Hadoop MapReduce and web server traffic workloads [44].

Workload Flow locality Avg packet size (B) Avg flow size (kB) Flow arrival rate (flow/s)

Hadoop

87% intra-rack

250

100

500

13% inter-rack 0.5

Web server

88% intra-rack

175 1 500

12% inter-rack

8 SERENE EVALUATION
We here show how the strong guarantees for consistent, secure, and reliable updates in SERENE can

be achieved with little overhead in practical networked environments. We show how aggregation

and multi-domain parallelism reduce that cost. Lastly we evaluate SERENE secure OFDP.

8.1 Experimental Methodology
We evaluate SERENE against existing update frameworks in typical business-like environments.

As such, we compare a centralized controller, a crash-only tolerant update protocol where commu-

nication within the control plane is performed using a crash-tolerant broadcast with no update

authentication on switches, and the SERENE update protocol on a single-domain setup with and

without aggregation on controllers (cf. Section 8.2) and on a multi-domain setup (cf. Section 8.3).

Setting. We executed the implementation detailed in Section 6 on a network simulated atop

compute nodes from the DeterLab test framework [92, 93] connected via a 1 Gb test network. Nodes

ran Ubuntu 18.04.1 LTS with kernel 4.15.0-43, two Intel® Xeon® E5-2420 processors at 2.2 GHz,

24 GB of RAM and a SATA attached 256 GB SSD. Controllers had their own node, switches and

hosts were node-sharing OpenVz [94] instances.

...

...

Top of 
Rack 

Switches

Edge 
Switches

Uplinks to 
Spine 

Switches

Figure 10. Depiction of a pod in a Facebook data
center [95] spanning racks and two switch layers.

Topology. We simulated the Facebook data center

topology [95] where data centers are divided into

server pods (as depicted in Figure 10) consisting

of 40 racks of compute servers. Each rack contains

a top-of-rack switch connecting all servers in the

rack. Each top-of-rack switch is connected to 4 edge

switches that provide high speed bandwidth and

redundancy between racks. Edge switches connect

multiple pods to spine switches (unshown in Fig-

ure 10) linked to the upstream network. Rack hosts and the top-of-rack switches were simulated

using OpenVz images on a single physical node. Edge and spine switches were each collectively

simulated on their own physical node. One physical node for each switch type.

For larger evaluations on multiple data centers, we combined the upstream spine switches for

the data center server pods together through backbone switches using topologies documented by

the Internet Topology Zoo [96], specifically Abilene and Deutsche Telekom. In our evaluation we

set the latency network links between data centers to be 5 times that of links within a data center.

Workloads. To evaluate flow completion rates, we ran Hadoop MapReduce and web server traffic

workloads with parameters as described in [44] over the given topology and measured their flow

completion times according to the shortest path routing policy used by the controller application.

We used 5,000 flows per framework following a Poisson distribution using average packet sizes and

total flow sizes for inter-rack, intra-data center, and inter-data center defined for each workload.
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Figure 11. SERENE performance on a single-domain network comparing a centralized solution to a control
plane, made of 4 controller replicas, that uses either a crash-tolerant update protocol, SERENE without/with
controller aggregation. (a) and (b) depict the CDF ofHadoop andweb server flow completion times, respectively.
(c) depicts the CDF of Hadoop flow completion times when routes are removed upon flow completion. (d)
depicts the CPU utilization of OVS during a Hadoop workload without/with echoed updates in SERENE.

Table 7 summarizes the average sizes for packets and flows for each workload. Our tested workloads

focus on flow creation from data plane requests. While SERENE supports a dynamic control plane,

the requests for establishing new flows outweighs the overhead from churn in the control plane.

To evaluate data plane state discovery, we used topology discovery workload based on OFDP [24].

Creating routes. Unless explicitly stated otherwise, rules in flow tables are reused for multiple

flows. Flow tables in switches initially contain no forwarding rules. As flows enter the network,

events for unroutable packets are generated by switches and sent to the control plane. Controllers

respond with network updates sent to switches to establish rules for the flows. As flows complete,

these rules remain in switch flow tables and are reused by later flows matching them. As reported

in [44] for Hadoop workloads 99.8% of traffic originating from Hadoop nodes is destined for other

Hadoop nodes in the cluster. Reusing rules requires fewer overall events. Switches do not need to

contact the control plane for each new flow.

8.2 Single-Domain Evaluation
In the following, we used a single server pod topology with a control plane made up of 4 controllers

that tolerates 1 failure and results in a quorum size of 3. This evaluated control plane size is similar

to evaluations of related work [9, 22, 52].

Flow completion time. Figure 11a and Figure 11b show flow completion times for the Hadoop and

web server workloads, respectively. Setting up a flow takes ≈2.9 ms on average for a centralized
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controller and ≈4.3 ms for a crash fault-tolerant replicated control plane. SERENE is slower due to

the extra messaging and therefore takes ≈8.3 ms without and ≈11.6 ms with controller aggregation

for flow setup. However, flow rules are reused for future arriving flows since they are not removed

from switches once established. Therefore, after initial flow setup, SERENE’s overhead is negligible.

Note that flows are only really transmitted once connections are set up at the application level.

This is typical for TCP/IP, used here, also in SDN scenarios. If applications started transmitting im-

mediately, many packets would be dropped almost inevitably until paths are established, regardless

of SERENE’s overheads. However, we have never observed any failure in connection establishment

caused by the increased setup time, despite relying on default parameters only.

Unamortized flow creation. To further investigate the overhead of SERENE, we ran the Hadoop

workload using a setup/teardown approach. In this approach, no flow rules for routes are initially

set in the data plane. Each flow is managed by a pair of events to inform the control plane to

set the route for the flow before it starts, and clear the flow rules for the route once the flow is

completed, hence preventing overhead amortization. Each event results in appropriate network

updates. The setup/teardown approach is applicable in hosted networks such as those utilizing

subscription-based services.

The average flow completion times are depicted in Figure 11c. For Hadoop flows, lasting ≈33.6 ms

on average, SERENE has an overhead of 16% with switch aggregation and 29% with controller

aggregation over the centralized approach. Setup times are constant regardless of overall flow

duration. Since these setup times are the same for all flows, SERENE’s overhead with these short-

lived flows would be shadowed by the total flow execution time for longer running flows.

Switch resource usage and verification rate. To reduce switches’ CPU utilization, update signatures

can be aggregated on the control plane at the cost of increased latency (cf. Figure 11c). Figure 11d

depicts OVS CPU utilization on switches for the Hadoop workload. While SERENE signature

verification increases CPU utilization on switches, controller aggregation halves switch CPU usage.

Having switches aggregating signatures themselves did not result in an increased latency in the

processing of updates. Similarly, having switches echoing updates back to the control plane for the

purpose of recording them in the ledger (cf. Section 3.4) only incurred a minimal CPU utilization

overhead. To further test switch load we measured the rate at which switches can verify message

signatures. In our environment, a single switch is able to process on average ≈1,163 message

signatures per second. This value is well within acceptable limits considering our characteristic

workloads have a flow arrival rate of 500 flows per second on average (cf. Table 7).

8.3 Multi-Domain Evaluation
As discussed in Section 3.5, SERENE provides a means to logically divide the data plane into

separate network domains each with its own separate control plane. Events generated within a

domain requiring updates solely to the data plane contained in the domain, i.e., local events, can be

processed independently of other domains’ local events. As we will show shortly, this separation

can reduce the load on the control plane(s) and improve scalability. This separation is particularly

useful in the face of large networks that share the same large control plane for simplicity. We first

evaluate the cost of various control plane sizes to display the benefit for multiple domains.

Control plane size. While increasing the control planemembership size allows for more controllers

to be faulty, providing additional robustness, it also results in additional messaging for broadcasting

events as well as an increased latency, both of which increases the overhead of updates. To examine

this overhead we performed a series of updates with control plane sizes varying up to 10 members.
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Figure 12. SERENE performance for multi-domain networks. (a) depicts the average time to apply switch
rules in a domain for a varying sized control plane. (b) depicts the comparison of events processed by each
controller in a pod configured as single vs multi-domain. (c) depicts the CDF of Hadoop flow completion
times for both single and multiple domains. The single domain is made of 12 controller replicas while the
multi-domain consists of 3 domains each with 4 controller replicas (i.e., 12 controllers in total). (d) depicts the
CDF of web server flow completion times for a larger multi-data centers topology.

The results in Figure 12a depict the average time to perform a switch update for an event

depending on the size of the control plane. A control plane size of one represents an unprotected

centralized control plane. As expected, increasing the control plane size with SERENE increases

update time due to the extra messaging needed for broadcast and verification of aggregated

signatures. The crash-tolerant update approach is less impacted by the size of the control plane

since switches do not authenticate updates; the additional overhead is merely due to extra messaging.

With SERENE, the overhead for a single switch update can be significant for a large control

plane, e.g., 2.5× that of a centralized approach when using 10 controllers to support 3 failures.

However, in a data center environment, such a large control plane might be excessive as failures are

typically short-lived and failed controllers are quickly replaced with new correct ones. For instance,

tolerating 2 concurrent failures is enough to achieve 99.999% of up-time [97]. Further, splitting the

network into disjoint domains may help reduce overhead inherent to a growing control plane.

Event locality. We next investigated how increasing the number of domains within a single pod

affects events processing. Due to the locality of flows as reported by Facebook [44], only 5.8% of the

Hadoop workload and 31.6% of the web server workload required processing by multiple domains.

Figure 12b shows the percentage of total events (for the whole data center) that must be processed

by each control plane. For a single network domain, all events must naturally be processed by the

single control plane. As the number of domains increases, the number of events processed by each

domain’s control plane is greatly reduced, however with diminishing returns. While this evaluation

shows the gains achievable using multiple domains for one pod, it is more practical to increase

ACM Trans. Priv. Sec., Vol. 26, No. 1, Article 8. Publication date: November 2022.



8:34 James Lembke, Srivatsan Ravi, Pierre-Louis Roman, and Patrick Eugster

(a) Abilene topology.
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Figure 13. Network depiction and results for SERENE secure topology discovery. (a) depicts the connectivity
of the Abilene network topology. (b) depicts the time for the control plane to discover the network topology
using a centralized, crash tolerant, and SERENE based control plane.

the size of the network by adding more pods. To that end, we next evaluated the impact of event

locality by increasing the number of pods in the data center with one domain per pod.

Multi-domain flow completion time. We executed the Hadoop workload using 2 server pods, each

set into its own domain with a third domain (containing 4 redundant switches) used to interconnect

them. Each domain’s control plane consisted of 4 controller replicas resulting in 12 replicas for the

entire network. We compared this setup to the same network topology with a single domain and a

control plane of 12 replicas.

Figure 12c shows flow completion time using SERENE in the single and multi-domain (MD)

setup, with and without controller aggregation. Thanks to their locality, most events are processed

in parallel when using multiple domains, thus greatly reducing flow completion time compared to

a single domain. While flows crossing domains incur an additional overhead, an efficient domain

architecture can reduce their number.

Multiple data centers. Our final multi-domain evaluation involved pods located in multiple data

centers following Deutsche Telekom’s topology as documented by the Internet Topology Zoo [96].

Each data center consisted of 4 pods interconnected via spine and edge switches as described in

Facebook data center topology [95]. Each pod was set as its own domain for SERENE, while a

single controller was used for the entire network (all data centers) for the centralized approach. We

evaluated the completion time of web server flows taking into account their locality as reported by

Facebook [44]: 15.7% traverse pods within the same data center and 15.9% traverse data centers.

The results depicted in Figure 12d show that the centralized controller suffers from the increased

latency for establishment of flows across data centers. However, SERENE does not suffer from this

increased latency thanks to domain parallelism and hence performs better than the centralized

approach, unlike the single-domain setup, while being much more secure. These results exhibit the

benefits of parallelism even under the web server workload (with 15.7%+15.9% crossing flows) that

has far fewer local events than the Hadoop one (3.3%+2.5%).

8.4 Topology Discovery Evaluation
Here we evaluated the time to discover all switches and links using SERENE secure OFDP as

described in Section 7 for the Abilene topology depicted in Figure 13a. This topology represents the

backbone created by the Internet2 community in the U.S. [25]. The results are shown in Figure 13b.

SERENE exhibits an average discovery time of 1.45 s and 1.48 s when controller aggregation is used

compared to a discovery time of 1.3 s for a centralized controller. This results in an overhead of

11.5%, and 13.8% with controller aggregation. The overhead has a direct result in the control plane’s
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response to changes in topology (e.g., link and/or switch failures). Given that topology discovery is

an ongoing process executed within an established time unit, this overhead is tolerable.

9 CONCLUSIONS
We present SERENE, a practical construction for secure and reliable network updates that ensures

consistency, thanks to an update scheduler that reduces ordering constraints by exploiting update

parallelism through dependency analysis, and scalability to large networks through update domains.

Threshold cryptography and distributed key generation allows for verification of updates by the

data plane and flexibility in control plane membership, while minimizing switch instrumentation.

SERENE’s control plane is resilient to a dynamic adversary by employing a failure detector that

combines heartbeats to detect controller crashes and a distributed ledger to detect (potentially

transient and malicious) failures based on the outputs of controllers (e.g., muteness failures [19]).

We provide an algorithmic formalization of SERENE and prove its safety with regards to event-

linearizability. We further present how SERENE integrates with OpenFlow discovery protocol

to propose a novel secure data plane topology discovery protocol. We show that SERENE can

provide consistency, security and reliability with minimal overhead to flow completion time through

extensive analysis using a functional Facebook data center topology with characteristic workloads.

Additional optimizations using controller aggregation reduce the load on data plane switches.

As future work, we plan to alleviate the assumption that switches remain correct and investigate

protection mechanisms against policy related faults from the data plane. We also plan to investigate

dynamic policies across multiple domains as well as domains distributed across multiple ASs.
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